Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 10(15): eadj0400, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38598636

RESUMO

Despite the recognized gut-brain axis link, natural variations in microbial profiles between patients hinder definition of normal abundance ranges, confounding the impact of dysbiosis on infant neurodevelopment. We infer a digital twin of the infant microbiome, forecasting ecosystem trajectories from a few initial observations. Using 16S ribosomal RNA profiles from 88 preterm infants (398 fecal samples and 32,942 abundance estimates for 91 microbial classes), the model (Q-net) predicts abundance dynamics with R2 = 0.69. Contrasting the fit to Q-nets of typical versus suboptimal development, we can reliably estimate individual deficit risk (Mδ) and identify infants achieving poor future head circumference growth with ≈76% area under the receiver operator characteristic curve, 95% ± 1.8% positive predictive value at 98% specificity at 30 weeks postmenstrual age. We find that early transplantation might mitigate risk for ≈45.2% of the cohort, with potentially negative effects from incorrect supplementation. Q-nets are generative artificial intelligence models for ecosystem dynamics, with broad potential applications.


Assuntos
Microbioma Gastrointestinal , Microbiota , Lactente , Humanos , Recém-Nascido , Recém-Nascido Prematuro , Inteligência Artificial , Microbioma Gastrointestinal/genética , Fezes
2.
Gut Microbes ; 16(1): 2298697, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38303501

RESUMO

The early life gut microbiome affects the developing brain, and therefore may serve as a target to support neurodevelopment of children living in stressful and under-resourced environments, such as Black youth living on the South Side of Chicago, for whom we observe racial disparities in health. Microbiome compositions/functions key to multiple neurodevelopmental facets have not been studied in Black children, a vulnerable population due to racial disparities in health; thus, a subsample of Black infants living in urban, low-income neighborhoods whose mothers participated in a prenatal nutrition study were recruited for testing associations between composition and function of the gut microbiome (16S rRNA gene sequencing, shotgun metagenomics, and targeted metabolomics of fecal samples) and neurodevelopment (developmental testing, maternal report of temperament, and observed stress regulation). Two microbiome community types, defined by high Lachnospiraceae or Enterobacteriaceae abundance, were discovered in this cohort from 16S rRNA gene sequencing analysis; the Enterobacteriaceae-dominant community type was significantly negatively associated with cognition and language scores, specifically in male children. Vitamin B12 biosynthesis emerged as a key microbiome function from shotgun metagenomics sequencing analysis, showing positive associations with all measured developmental skills (i.e., cognition, language, motor, surgency, effortful control, and observed stress regulation). Blautia spp. also were identified as substantial contributors of important microbiome functions, including vitamin B12 biosynthesis and related vitamin B12-dependent microbiome functions, anti-inflammatory microbial surface antigens, competitive mechanisms against pathobionts, and production of antioxidants. The results are promising with respect to the potential for exploring therapeutic candidates, such as vitamin B12 nutritional or Blautia spp. probiotic supplementation, to support the neurodevelopment of infants at risk for experiencing racial disparities in health.


Assuntos
Microbioma Gastrointestinal , Vitamina B 12 , Lactente , Criança , Gravidez , Feminino , Adolescente , Humanos , Masculino , RNA Ribossômico 16S/genética , Microbioma Gastrointestinal/genética , Encéfalo , Vitaminas
3.
Nat Microbiol ; 7(10): 1506-1507, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36163499
4.
Sci Rep ; 12(1): 3310, 2022 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-35228616

RESUMO

Interventions to mitigate long-term neurodevelopmental deficits such as memory and learning impairment in preterm infants are warranted. Manipulation of the gut microbiome affects host behaviors. In this study we determined whether early maturation of the infant microbiome is associated with neurodevelopment outcomes. Germ free mice colonized at birth with human preterm infant microbiomes from infants of advancing post menstrual age (PMA) demonstrated an increase in bacterial diversity and a shift in dominance of taxa mimicking the human preterm microbiome development pattern. These characteristics along with changes in a number of metabolites as the microbiome matured influenced associative learning and memory but not locomotor ability, anxiety-like behaviors, or social interaction in adult mice. As a regulator of learning and memory, brain glial cell-derived neurotrophic factor increased with advancing PMA and was also associated with better performance in associative learning and memory in adult mice. We conclude that maturation of the microbiome in early life of preterm infants primes adult associative memory and learning ability. Our findings suggest a critical window of early intervention to affect maturation of the preterm infant microbiome and ultimately improve neurodevelopmental outcomes.


Assuntos
Microbioma Gastrointestinal , Microbiota , Animais , Bactérias , Encéfalo , Humanos , Lactente , Recém-Nascido , Recém-Nascido Prematuro , Camundongos
5.
Gut Microbes ; 13(1): 1997560, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34839801

RESUMO

The early life microbiome plays critical roles in host development, shaping long-term outcomes including brain functioning. It is not known which initial infant colonizers elicit optimal neurodevelopment; thus, this study investigated the association between gut microbiome succession from the first week of life and head circumference growth (HCG), the earliest validated marker for neurodevelopment. Fecal samples were collected weekly from a preterm infant cohort during their neonatal intensive care unit stay and subjected to 16S rRNA gene sequencing for evaluating gut microbiome composition, in conjunction with clinical data and head circumference measurements. Preterm infants with suboptimal HCG trajectories had a depletion in the abundance/prevalence of Bacteroidota and Lachnospiraceae, independent of morbidity and caloric restriction. The severity of gut microbiome depletion matched the timing of significant HCG pattern separation between study groups at 30-week postmenstrual age demonstrating a potential mediating relationship resultant from clinical practices. Consideration of the clinical variables indicated that optimal infant microbiome succession is primarily driven by dispersal limitation (i.e., delivery mode) and secondarily by habitat filtering (i.e., antibiotics and enteral feeding). Bacteroidota and Lachnospiraceae are known core taxa of the adult microbiome, with roles in dietary glycan foraging, beneficial metabolite production and immunity, and our work provides evidence that their integration into the gut microbiome needs to occur early for optimal neurodevelopment.


Assuntos
Bacteroidetes/fisiologia , Desenvolvimento Infantil/fisiologia , Clostridiales/fisiologia , Microbioma Gastrointestinal/fisiologia , Antibacterianos/uso terapêutico , Bacteroidetes/isolamento & purificação , Clostridiales/isolamento & purificação , Parto Obstétrico , Nutrição Enteral , Fezes/microbiologia , Feminino , Cabeça/crescimento & desenvolvimento , Humanos , Lactente , Recém-Nascido , Recém-Nascido Prematuro , Masculino
7.
J Mol Cell Cardiol ; 149: 54-72, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32961201

RESUMO

Myocardial infarction (MI) leading to heart failure (HF) is a major cause of death worldwide. Previous studies revealed that the circadian system markedly impacts cardiac repair post-MI, and that light is an important environmental factor modulating the circadian influence over healing. Recent studies suggest that gut physiology also affects the circadian system, but how it contributes to cardiac repair post-MI and in HF is not well understood. To address this question, we first used a murine coronary artery ligation MI model to reveal that an intact gut microbiome is important for cardiac repair. Specifically, gut microbiome disruption impairs normal inflammatory responses in infarcted myocardium, elevates adverse cardiac gene biomarkers, and leads to worse HF outcomes. Conversely, reconstituting the microbiome post-MI in mice with prior gut microbiome disruption improves healing, consistent with the notion that normal gut physiology contributes to cardiac repair. To investigate a role for the circadian system, we initially utilized circadian mutant Clock∆19/∆19 mice, revealing that a functional circadian mechanism is necessary for gut microbiome benefits on post-MI cardiac repair and HF. Finally, we demonstrate that circadian-mediated gut responses that benefit cardiac repair can be conferred by time-restricted feeding, as wake time feeding of MI mice improves HF outcomes, but these benefits are not observed in MI mice fed during their sleep time. In summary, gut physiology is important for cardiac repair, and the circadian system influences the beneficial gut responses to improve post-MI and HF outcomes.


Assuntos
Ritmo Circadiano/fisiologia , Microbioma Gastrointestinal , Insuficiência Cardíaca/microbiologia , Insuficiência Cardíaca/fisiopatologia , Animais , Proteínas CLOCK/metabolismo , Hemodinâmica , Inflamação/patologia , Leucócitos/patologia , Masculino , Metaboloma , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/microbiologia , Infarto do Miocárdio/fisiopatologia , Remodelação Ventricular/fisiologia
8.
PLoS One ; 15(8): e0237182, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32764797

RESUMO

Necrotizing enterocolitis is the most common gastrointestinal disorder in premature neonates. This disease is characterized by massive epithelial necrosis, gut barrier dysfunction and improper mucosal defense development. Studies have shown that probiotic administration can decrease NEC incidence and mortality. The proposed mechanisms of probiotics for the prevention of NEC are: promotion of intestinal development; improved barrier function through decreased apoptosis and improved mucin production; decreased expression of proinflammatory cytokines IL6, IL8, and TNFα, and modulation of microbiota dysbiosis in preterm infants. However, reported sepsis in the immunocompromised preterm host has deterred routine prophylactic administration of probiotics in the neonatal intensive care unit. We hypothesize that maternal administration of probiotics to pregnant mouse dams can recapitulate the beneficial effects observed in neonates fed with probiotics directly. We exposed pregnant mice to the probiotics and monitored the changes in the developing intestines of the offspring. Pregnant mice were fed daily with the probiotics Lactobacillus acidophilus and Bifidobacterium infantis (LB) from embryonic day15 to 2-week-old postnatally. Intraperitoneal administration of IL-1ß in the pups was used to model proinflammatory insults. Sera were collected at 2 weeks of age and evaluated for inflammatory cytokines by enzyme-linked-immunosorbent-assay and gut permeability by Fluorescein isothiocyanate-dextran tracer assay. Ileal tissues were collected for the evaluation of apoptosis and proliferation of the intestinal epithelium; as well as mucin and tight junction integrity at mucosal surface by immunofluorescent staining. We find that maternal LB exposure facilitated intestinal epithelial cell differentiation, prevented loss of mucin and preserved the intestinal integrity and barrier function and decreased serum levels of IL-1ß, TNF-α and IL-6 in the preweaned offsprings. in LB exposed pups. We demonstrate that maternal probiotic supplementation promotes gut maturation in developing offspring. This is potentially a safe alternative therapy to induce intestinal maturation and prevent prematurity-associated neonatal disorders.


Assuntos
Enterocolite Necrosante/prevenção & controle , Microbioma Gastrointestinal/fisiologia , Mucosa Intestinal/crescimento & desenvolvimento , Exposição Materna , Probióticos/administração & dosagem , Animais , Animais Recém-Nascidos/crescimento & desenvolvimento , Animais Recém-Nascidos/microbiologia , Bifidobacterium longum subspecies infantis , Diferenciação Celular/fisiologia , Modelos Animais de Doenças , Enterocolite Necrosante/imunologia , Enterocolite Necrosante/microbiologia , Enterocolite Necrosante/patologia , Fezes/microbiologia , Feminino , Interações entre Hospedeiro e Microrganismos/fisiologia , Humanos , Recém-Nascido , Recém-Nascido Prematuro , Interleucina-1beta/administração & dosagem , Interleucina-1beta/imunologia , Mucosa Intestinal/imunologia , Mucosa Intestinal/microbiologia , Mucosa Intestinal/patologia , Lactobacillus acidophilus , Camundongos
10.
J Proteomics ; 222: 103791, 2020 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-32335296

RESUMO

Stable isotope probing (SIP) approaches are a suitable tool to identify active organisms in bacterial communities, but adding isotopically labeled substrate can alter both the structure and the functionality of the community. Here, we validated and demonstrated a substrate-independent protein-SIP protocol using isotopically labeled water that captures the entire microbial activity of a community. We found that 18O yielded a higher incorporation rate into peptides and thus comprised a higher sensitivity. We then applied the method to an in vitro model of a human distal gut microbial ecosystem grown in two medium formulations, to evaluate changes in microbial activity between a high-fiber and high-protein diet. We showed that only little changes are seen in the community structure but the functionality varied between the diets. In conclusion, our approach can detect species-specific metabolic activity in complex bacterial communities and more specifically to quantify the amount of amino acid synthesis. Heavy water makes possible to analyze the activity of bacterial communities for which adding an isotopically labeled energy and nutrient sources is not easily feasible. SIGNIFICANCE: Heavy stable isotopes allow for the detection of active key players in complex ecosystems where many organisms are thought to be dormant. Opposed to the labelling with energy or nutrient sources, heavy water could be a suitable replacement to trace activity, which has been shown for DNA and RNA. Here we validate, quantify and compare the incorporation of heavy water either labeled with deuterium or 18­oxygen into proteins of Escherichia coli K12 and of an in vitro model of a human gut microbial ecosystem. The significance of our research is in providing a freely available pipeline to analyze the incorporation of deuterium and 18­oxygen into proteins together with the validation of the applicability of tracing heavy water as a proxy for activity. Our approach unveils the relative functional contribution of microbiota in complex ecosystems, which will improve our understanding of both animal- and environment-associated microbiomes and in vitro models.


Assuntos
Microbiota , Proteínas , Animais , Isótopos de Carbono/análise , Óxido de Deutério , Humanos , Marcação por Isótopo
11.
Expert Rev Proteomics ; 17(2): 163-173, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32174200

RESUMO

Introduction: Metaproteomics is an established method to obtain a comprehensive taxonomic and functional view of microbial communities. After more than a decade, we are now able to describe the promise, reality, and perspectives of metaproteomics and provide useful information about the choice of method, applications, and potential improvement strategies.Areas covered: In this article, we will discuss current challenges of species and proteome coverage, and also highlight functional aspects of metaproteomics analysis of microbial communities with different levels of complexity. To do this, we re-analyzed data from microbial communities with low to high complexity (8, 72, 200 and >300 species). High species diversity leads to a reduced number of protein group identifications in a complex community, and thus the number of species resolved is underestimated. Ultimately, low abundance species remain undiscovered in complex communities. However, we observed that the main functional categories were better represented within complex microbiomes when compared to species coverage.Expert opinion: Our findings showed that even with low species coverage, metaproteomics has the potential to reveal habitat-specific functional features. Finally, we exploit this information to highlight future research avenues that are urgently needed to enhance our understanding of taxonomic composition and functions of complex microbiomes.


Assuntos
Metabolômica/métodos , Metagenômica/métodos , Microbiota , Proteômica/métodos , Redes e Vias Metabólicas , Metabolômica/normas , Metagenoma , Metagenômica/normas , Proteoma/genética , Proteoma/metabolismo , Proteômica/normas
12.
mSystems ; 5(1)2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-31992630

RESUMO

Fecal microbiota transplantation (FMT) is a proposedly useful strategy for the treatment of gastrointestinal (GI) disorders through remediation of the patient gut microbiota. However, its therapeutic success has been variable, necessitating research to uncover mechanisms that improve patient response. Antibiotic pretreatment has been proposed as one method to enhance the success rate by increasing niche availability for introduced species. Several limitations hinder exploring this hypothesis in clinical studies, such as deleterious side effects and the development of antimicrobial resistance in patients. Thus, the purpose of this study was to evaluate the use of an in vitro, bioreactor-based, colonic ecosystem model as a form of preclinical testing by determining how pretreatment with the antibiotic rifaximin influenced engraftment of bacterial strains sourced from a healthy donor into an ulcerative colitis-derived defined microbial community. Distinct species integrated under the pretreated and untreated conditions, with the relative rifaximin resistance of the microbial strains being an important influencer. However, both conditions resulted in the integration of taxa from Clostridium clusters IV and XIVa, a concomitant reduction of Proteobacteria, and similar decreases in metabolites associated with poor health status. Our results agree with the findings of similar research in the clinic by others, which observed no difference in primary patient outcomes whether or not patients were given rifaximin prior to FMT. We therefore conclude that our model is useful for screening for antibiotics that could improve efficacy of FMT when used as a pretreatment.IMPORTANCE Patients with gastrointestinal disorders often exhibit derangements in their gut microbiota, which can exacerbate their symptoms. Replenishing these ecosystems with beneficial bacteria through fecal microbiota transplantation is thus a proposedly useful therapeutic; however, clinical success has varied, necessitating research into strategies to improve outcomes. Antibiotic pretreatment has been suggested as one such approach, but concerns over harmful side effects have hindered testing this hypothesis clinically. Here, we evaluate the use of bioreactors supporting defined microbial communities derived from human fecal samples as models of the colonic microbiota in determining the effectiveness of antibiotic pretreatment. We found that relative antimicrobial resistance was a key determinant of successful microbial engraftment with rifaximin (broad-spectrum antibiotic) pretreatment, despite careful timing of the application of the therapeutic agents, resulting in distinct species profiles from those of the control but with similar overall outcomes. Our model had results comparable to the clinical findings and thus can be used to screen for useful antibiotics.

13.
ISME J ; 13(12): 3080-3092, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31477821

RESUMO

Microbial community assembly is a complex process shaped by multiple factors, including habitat filtering, species assortment and stochasticity. Understanding the relative importance of these drivers would enable scientists to design strategies initiating a desired reassembly for e.g., remediating low diversity ecosystems. Here, we aimed to examine if a human fecal-derived defined microbial community cultured in bioreactors assembled deterministically or stochastically, by completing replicate experiments under two growth medium conditions characteristic of either high fiber or high protein diets. Then, we recreated this defined microbial community by matching different strains of the same species sourced from distinct human donors, in order to elucidate whether coadaptation of strains within a host influenced community dynamics. Each defined microbial ecosystem was evaluated for composition using marker gene sequencing, and for behavior using 1H-NMR-based metabonomics. We found that stochasticity had the largest influence on the species structure when substrate concentrations varied, whereas habitat filtering greatly impacted the metabonomic output. Evidence of coadaptation was elucidated from comparisons of the two communities; we found that the artificial community tended to exclude saccharolytic Firmicutes species and was enriched for metabolic intermediates, such as Stickland fermentation products, suggesting overall that polysaccharide utilization by Firmicutes is dependent on cooperation.


Assuntos
Bactérias/classificação , Microbioma Gastrointestinal , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/metabolismo , Ecossistema , Fezes/microbiologia , Fermentação , Humanos , Microbiota , Filogenia
14.
Microbiome ; 7(1): 91, 2019 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-31196177

RESUMO

The human gut microbiome is a critical component of digestion, breaking down complex carbohydrates, proteins, and to a lesser extent fats that reach the lower gastrointestinal tract. This process results in a multitude of microbial metabolites that can act both locally and systemically (after being absorbed into the bloodstream). The impact of these biochemicals on human health is complex, as both potentially beneficial and potentially toxic metabolites can be yielded from such microbial pathways, and in some cases, these effects are dependent upon the metabolite concentration or organ locality. The aim of this review is to summarize our current knowledge of how macronutrient metabolism by the gut microbiome influences human health. Metabolites to be discussed include short-chain fatty acids and alcohols (mainly yielded from monosaccharides); ammonia, branched-chain fatty acids, amines, sulfur compounds, phenols, and indoles (derived from amino acids); glycerol and choline derivatives (obtained from the breakdown of lipids); and tertiary cycling of carbon dioxide and hydrogen. Key microbial taxa and related disease states will be referred to in each case, and knowledge gaps that could contribute to our understanding of overall human wellness will be identified.


Assuntos
Bactérias/metabolismo , Fermentação , Microbioma Gastrointestinal , Interações entre Hospedeiro e Microrganismos , Nutrientes/metabolismo , Álcoois/metabolismo , Animais , Carboidratos da Dieta/metabolismo , Ácidos Graxos/metabolismo , Saúde , Humanos , Camundongos , Ratos
15.
Sci Rep ; 9(1): 885, 2019 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-30696914

RESUMO

Many cases of Clostridioides difficile infection (CDI) are poorly responsive to standard antibiotic treatment strategies, and often patients suffer from recurrent infections characterized by severe diarrhea. Our group previously reported the successful cure of two patients with recurrent CDI using a standardized stool-derived microbial ecosystem therapeutic (MET-1). Using an in vitro model of the distal gut to support bacterial communities, we characterized the metabolite profiles of two defined microbial ecosystems derived from healthy donor stool (DEC58, and a subset community, MET-1), as well as an ecosystem representative of a dysbiotic state (ciprofloxacin-treated DEC58). The growth and virulence determinants of two C. difficile strains were then assessed in response to components derived from the ecosystems. CD186 (ribotype 027) and CD973 (ribotype 078) growth was decreased upon treatment with DEC58 metabolites compared to ciprofloxacin-treated DEC58 metabolites. Furthermore, CD186 TcdA and TcdB secretion was increased following treatment with ciprofloxacin-treated DEC58 spent medium compared to DEC58 spent medium alone. The net metabolic output of C. difficile was also modulated in response to spent media from defined microbial ecosystems, although several metabolite levels were divergent across the two strains examined. Further investigation of these antagonistic properties will guide the development of microbiota-based therapeutics for CDI.


Assuntos
Clostridioides difficile/genética , Fezes/microbiologia , Microbioma Gastrointestinal/genética , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Toxinas Bacterianas/farmacologia , Ciprofloxacina/farmacologia , Clostridiales/genética , Clostridiales/metabolismo , Clostridioides difficile/metabolismo , Infecções por Clostridium/microbiologia , Diarreia/microbiologia , Disbiose/microbiologia , Enterotoxinas/farmacologia , Transplante de Microbiota Fecal/métodos , Humanos , Microbiota/genética , Virulência/genética , Fatores de Virulência/farmacologia
16.
Int J Med Microbiol ; 306(5): 280-289, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27020116

RESUMO

The metabolic functionality of a microbial community is a key to the understanding of its inherent ecological processes and the interaction with the host. However, the study of the human gut microbiota is hindered by the complexity of this ecosystem. One way to resolve this issue is to derive defined communities that may be cultured ex vivo in bioreactor systems and used to approximate the native ecosystem. Doing so has the advantage of experimental reproducibility and ease of sampling, and furthermore, in-depth analysis of metabolic processes becomes highly accessible. Here, we review the use of bioreactor systems for ex vivo modelling of the human gut microbiota with respect to analysis of the metabolic output of the microbial ecosystem, and discuss the possibility of mechanistic insights using these combined techniques. We summarize the different platforms currently used for metabolomics and suitable for analysis of gut microbiota samples from a bioreactor system. With the help of representative datasets obtained from a series of bioreactor runs, we compare the outputs of both NMR and mass spectrometry based approaches in terms of their coverage, sensitivity and quantification. We also discuss the use of untargeted and targeted analyses in mass spectroscopy and how these techniques can be combined for optimal biological interpretation. Potential solutions for linking metabolomic and phylogenetic datasets with regards to active, key species within the ecosystem will be presented.


Assuntos
Reatores Biológicos/microbiologia , Microbioma Gastrointestinal , Trato Gastrointestinal/microbiologia , Metabolômica/métodos , Microbiota , Modelos Teóricos , Ecossistema , Humanos
17.
PLoS One ; 10(4): e0122684, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25853427

RESUMO

A role for type A Clostridium perfringens in acute hemorrhagic and necrotizing gastroenteritis in dogs and in necrotizing enterocolitis of neonatal foals has long been suspected but incompletely characterized. The supernatants of an isolate made from a dog and from a foal that died from these diseases were both found to be highly cytotoxic for an equine ovarian (EO) cell line. Partial genome sequencing of the canine isolate revealed three novel putative toxin genes encoding proteins related to the pore-forming Leukocidin/Hemolysin Superfamily; these were designated netE, netF, and netG. netE and netF were located on one large conjugative plasmid, and netG was located with a cpe enterotoxin gene on a second large conjugative plasmid. Mutation and complementation showed that only netF was associated with the cytotoxicity. Although netE and netG were not associated with cytotoxicity, immunoblotting with specific antisera showed these proteins to be expressed in vitro. There was a highly significant association between the presence of netF with type A strains isolated from cases of canine acute hemorrhagic gastroenteritis and foal necrotizing enterocolitis. netE and netF were found in all cytotoxic isolates, as was cpe, but netG was less consistently present. Pulsed-field gel electrophoresis showed that netF-positive isolates belonged to a clonal population; some canine and equine netF-positive isolates were genetically indistinguishable. Equine antisera to recombinant Net proteins showed that only antiserum to rNetF had high supernatant cytotoxin neutralizing activity. The identifica-tion of this novel necrotizing toxin is an important advance in understanding the virulence of type A C. perfringens in specific enteric disease of animals.


Assuntos
Toxinas Bacterianas/genética , Clostridium perfringens/genética , Enterocolite Necrosante/microbiologia , Enterotoxinas/genética , Gastroenterite/microbiologia , Animais , Toxinas Bacterianas/química , Toxinas Bacterianas/farmacologia , Linhagem Celular/efeitos dos fármacos , Clostridium perfringens/patogenicidade , Cães , Enterocolite Necrosante/genética , Enterocolite Necrosante/veterinária , Enterotoxinas/farmacologia , Gastroenterite/genética , Gastroenterite/veterinária , Genoma , Sequenciamento de Nucleotídeos em Larga Escala , Cavalos , Poro Nuclear/efeitos dos fármacos
18.
J Proteome Res ; 14(3): 1472-82, 2015 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-25670064

RESUMO

The extensive impact of the human gut microbiota on its human host calls for a need to understand the types of communication that occur among the bacteria and their host. A metabolomics approach can provide a snapshot of the microbe-microbe interactions occurring as well as variations in the microbes from different hosts. In this study, metabolite profiles from an anaerobic continuous stirred-tank reactors (CSTR) system supporting the growth of several consortia of bacteria representative of the human gut were established and compared. Cell-free supernatant samples were analyzed by 1D (1)H nuclear magnetic resonance (NMR) spectroscopy, producing spectra representative of the metabolic activity of a particular community at a given time. Using targeted profiling, specific metabolites were identified and quantified on the basis of NMR analyses. Metabolite profiles discriminated each bacterial community examined, demonstrating that there are significant differences in the microbiota metabolome between each cultured community. We also found unique compounds that were identifying features of individual bacterial consortia. These findings are important because they demonstrate that metabolite profiles of gut microbial ecosystems can be constructed by targeted profiling of NMR spectra. Moreover, examination of these profiles sheds light on the type of microbes present in the gut and their metabolic interactions.


Assuntos
Fezes/microbiologia , Metabolômica , Microbiota , Humanos , Análise Multivariada
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...