Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Physiol (Oxf) ; 219(1): 176-187, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27497091

RESUMO

It has been suggested that the transient receptor potential cation (TRP) channel subfamily V (vanilloid) type 4 (TRPV4) and intermediate conductance calcium-activated potassium (KCa3.1) channels contribute to endothelium-dependent vasodilation. Here, we summarize very recent evidence for a synergistic interplay of TRPV4 and KCa3.1 channels in lung disease. Among the endothelial Ca2+ -permeable TRPs, TRPV4 is best characterized and produces arterial dilation by stimulating Ca2+ -dependent nitric oxide synthesis and endothelium-dependent hyperpolarization. Besides these roles, some TRP channels control endothelial/epithelial barrier functions and vascular integrity, while KCa3.1 channels provide the driving force required for Cl- and water transport in some cells and most secretory epithelia. The three conditions, increased pulmonary venous pressure caused by left heart disease, high inflation pressure and chemically induced lung injury, may lead to activation of TRPV4 channels followed by Ca2+ influx leading to activation of KCa3.1 channels in endothelial cells ultimately leading to acute lung injury. We find that a deficiency in KCa3.1 channels protects against TRPV4-induced pulmonary arterial relaxation, fluid extravasation, haemorrhage, pulmonary circulatory collapse and cardiac arrest in vivo. These data identify KCa3.1 channels as crucial molecular components in downstream TRPV4 signal transduction and as a potential target for the prevention of undesired fluid extravasation, vasodilatation and pulmonary circulatory collapse.


Assuntos
Pulmão/metabolismo , Canais de Potássio Cálcio-Ativados/metabolismo , Circulação Pulmonar/fisiologia , Edema Pulmonar/metabolismo , Canais de Potencial de Receptor Transitório/metabolismo , Animais , Cálcio/metabolismo , Endotélio Vascular/metabolismo , Humanos
2.
Adv Pharmacol ; 77: 65-104, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27451095

RESUMO

Endothelial calcium/calmodulin-gated K channels of small (KCa2.3) and intermediate conductance (KCa3.1) produce membrane hyperpolarization and endothelium-dependent hyperpolarization (EDH)-mediated vasodilation. Dysfunctions of the two channels and ensuing EDH impairments are found in several cardiovascular pathologies such as diabetes, atherosclerosis, postangioplastic neointima formation, but also inflammatory disease, cancer, and organ fibrosis. Moreover, KCa3.1 plays an important role in endothelial barrier dysfunction, edema formation in cardiac and pulmonary disease, and in ischemic stroke. Concerning KCa2.3, genome-wide association studies revealed an association of KCa2.3 channels with atrial fibrillation in humans. Accordingly, both channels are considered potential drug targets for cardio- and cerebrovascular disease states. In this chapter, we briefly review the function of the two channels in EDH-type vasodilation and systemic circulatory regulation and then highlight their pathophysiological roles in ischemic stroke as well as in pulmonary and brain edema. Finally, the authors summarize recent advances in the pharmacology of the channels and explore potential therapeutic utilities of novel channel modulators.


Assuntos
Doenças Cardiovasculares/tratamento farmacológico , Endotélio Vascular/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/metabolismo , Animais , Estudo de Associação Genômica Ampla , Humanos , Vasodilatação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...