Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
PLoS Negl Trop Dis ; 17(11): e0011087, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38011274

RESUMO

According to the World Health Organization (WHO), dengue is the most common acute arthropod-borne viral infection in the world. The spread of dengue and other infectious diseases is closely related to human activity and mobility. In this paper we analyze the effect of introducing mobility restrictions as a public health policy on the total number of dengue cases within a population. To perform the analysis, we use a complex metapopulation in which we implement a compartmental propagation model coupled with the mobility of individuals between the patches. This model is used to investigate the spread of dengue in the municipalities of Caldas (CO). Two scenarios corresponding to different types of mobility restrictions are applied. In the first scenario, the effect of restricting mobility is analyzed in three different ways: a) limiting the access to the endemic node but allowing the movement of its inhabitants, b) restricting the diaspora of the inhabitants of the endemic node but allowing the access of outsiders, and c) a total isolation of the inhabitants of the endemic node. In this scenario, the best simulation results are obtained when specific endemic nodes are isolated during a dengue outbreak, obtaining a reduction of up to 2.5% of dengue cases. Finally, the second scenario simulates a total isolation of the network, i.e., mobility between nodes is completely limited. We have found that this control measure increases the number of total dengue cases in the network by 2.36%.


Assuntos
Dengue , Humanos , Dengue/epidemiologia , Colômbia/epidemiologia , Surtos de Doenças , Cidades , Simulação por Computador
2.
Insects ; 14(8)2023 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-37623385

RESUMO

Coffee is a relevant agricultural product in the global economy, with the amount and quality of the bean being seriously affected by the coffee berry borer Hypothenemus hampei (Ferrari), CBB, its principal pest. One of the ways to deal with this beetle is through biological control agents, like ants (Hymenoptera: Formicidae), some of which are characterized by naturally inhabiting coffee plantations and feeding on CBB in all their life stages. Our paper considers a predator-prey interaction between these two insects through a novel mathematical model based on ordinary differential equations, where the state variables correspond to adult CBBs, immature CBBs, and ants from one species, without specifying whether preying on the CBB is among their feeding habits, in both adult and immature stages. Through this new mathematical model, we could qualitatively predict the different dynamics present in the system as some meaningful parameters were varied, filling the existing gap in the literature and envisioning ways to manage pests. Mathematically, the system's equilibrium points were determined, and its stability was studied through qualitative theory. Bifurcation theory and numerical simulations were applied to illustrate the stability of the results, which were interpreted as conditions of the coexistence of the species, as well as conditions for eradicating the pest, at least theoretically, through biocontrol action in combination with other actions focused on eliminating only adult CBBs.

3.
J Math Biol ; 83(4): 42, 2021 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-34564787

RESUMO

Nonpharmaceutical interventions (NPI) such as banning public events or instituting lockdowns have been widely applied around the world to control the current COVID-19 pandemic. Typically, this type of intervention is imposed when an epidemiological indicator in a given population exceeds a certain threshold. Then, the nonpharmaceutical intervention is lifted when the levels of the indicator used have decreased sufficiently. What is the best indicator to use? In this paper, we propose a mathematical framework to try to answer this question. More specifically, the proposed framework permits to assess and compare different event-triggered controls based on epidemiological indicators. Our methodology consists of considering some outcomes that are consequences of the nonpharmaceutical interventions that a decision maker aims to make as low as possible. The peak demand for intensive care units (ICU) and the total number of days in lockdown are examples of such outcomes. If an epidemiological indicator is used to trigger the interventions, there is naturally a trade-off between the outcomes that can be seen as a curve parameterized by the trigger threshold to be used. The computation of these curves for a group of indicators then allows the selection of the best indicator the curve of which dominates the curves of the other indicators. This methodology is illustrated with indicators in the context of COVID-19 using deterministic compartmental models in discrete-time, although the framework can be adapted for a larger class of models.


Assuntos
COVID-19 , Pandemias , Controle de Doenças Transmissíveis , Humanos , Políticas , SARS-CoV-2
4.
Bioprocess Biosyst Eng ; 41(3): 395-405, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29209845

RESUMO

Acetone, butanol, and ethanol (ABE) is an alternative biofuel. However, the energy requirement of ABE recovery by distillation is considered elevated (> 15.2 MJ fuel/Kg-ABE), due to the low concentration of ABE from fermentation broths (between 15 and 30 g/l). In this work, to reduce the energy requirements of ABE recovery, four processes of heat-integrated distillation were proposed. The energy requirements and economic evaluations were performed using the fermentation broths of several biocatalysts. Energy requirements of the processes with four distillation columns and three distillation columns were similar (between 7.7 and 11.7 MJ fuel/kg-ABE). Double-effect system (DED) with four columns was the most economical process (0.12-0.16 $/kg-ABE). ABE recovery from dilute solutions by DED achieved energy requirements between 6.1 and 8.7 MJ fuel/kg-ABE. Vapor compression distillation (VCD) reached the lowest energy consumptions (between 4.7 and 7.3 MJ fuel/kg-ABE). Energy requirements for ABE recovery DED and VCD were lower than that for integrated reactors. The energy requirements of ABE production were between 1.3- and 2.0-fold higher than that for alternative biofuels (ethanol or isobutanol). However, the energy efficiency of ABE production was equivalent than that for ethanol and isobutanol (between 0.71 and 0.76) because of hydrogen production in ABE fermentation.


Assuntos
Acetona/isolamento & purificação , Butanóis/isolamento & purificação , Destilação , Etanol/isolamento & purificação , Modelos Químicos
5.
Bioresour Bioprocess ; 4(1): 12, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28251042

RESUMO

BACKGROUND: Dual extraction, high-temperature extraction, mixture extraction, and oleyl alcohol extraction have been proposed in the literature for acetone, butanol, and ethanol (ABE) production. However, energy and economic evaluation under similar assumptions of extraction-based separation systems are necessary. Hence, the new process proposed in this work, direct steam distillation (DSD), for regeneration of high-boiling extractants was compared with several extraction-based separation systems. METHODS: The evaluation was performed under similar assumptions through simulation in Aspen Plus V7.3® software. Two end distillation systems (number of non-ideal stages between 70 and 80) were studied. Heat integration and vacuum operation of some units were proposed reducing the energy requirements. RESULTS: Energy requirement of hybrid processes, substrate concentration of 200 g/l, was between 6.4 and 8.3 MJ-fuel/kg-ABE. The minimum energy requirements of extraction-based separation systems, feeding a water concentration in the substrate equivalent to extractant selectivity, and ideal assumptions were between 2.6 and 3.5 MJ-fuel/kg-ABE, respectively. The efficiencies of recovery systems for baseline case and ideal evaluation were 0.53-0.57 and 0.81-0.84, respectively. CONCLUSIONS: The main advantages of DSD were the operation of the regeneration column at atmospheric pressure, the utilization of low-pressure steam, and the low energy requirements of preheating. The in situ recovery processes, DSD, and mixture extraction with conventional regeneration were the approaches with the lowest energy requirements and total annualized costs.

6.
Rev. salud pública ; 14(3): 512-523, may.-jun. 2012. ilus, graf, tab
Artigo em Espanhol | LILACS | ID: lil-681033

RESUMO

Objetivo: En este trabajo se presenta un modelo matemático que muestra la dinámica de transmisión del dengue, con el objetivo de estudiar el comportamiento de las poblaciones delAedes aegyptiy de las personas afectadas. Este modelo puede ser tenido en cuenta por los programas de vigilancia y control a la hora de tomar decisiones. Métodos: El modelo matemático propuesto está representado por ocho ecuaciones diferenciales con retardos constantes. Cada ecuación representa la variación de cada subpoblación tanto en los humanos como en el mosquito transmisor. Resultados: Se presentan dos escenarios de simulación del modelo matemático resueltos mediante un algoritmo implementado en el software MATLAB, con datos obtenidos del Departamento Nacional de Estadísticas de Colombia (DANE), la Organización Mundial de la Salud (OMS) y la revisión de literatura. En cada escenario se analizan tanto la población humana como la del mosquito, con la utilización o no de controles. Conclusiones: El modelo matemático propuesto es capaz de simular la dinámica de transmisión del dengue, muestra el comportamiento de las poblaciones delAedes aegyptiy de las personas afectadas y puede ser una herramienta a tener en cuenta para apoyar de forma científica la toma de decisiones en los programas de vigilancia y control.


Objective: A mathematical model is presented in this paper showing the dynamics of dengue transmission. The goal was to studyAedes aegyptipopulation behaviour and that of affected people to scientifically support the decision-making involved in surveillance and control programmes. Methods: The proposed mathematical model involved eight differential equations having constant delays; each represented each population's variation either in humans or the mosquito vector. Results: Two of the mathematical model's simulation scenarios are presented; they were solved by means of an algorithm implemented in MATLAB software. The data was obtained from the Colombian Statistics Department (DANE), the World Health Organisation (WHO) and from a review of the pertinent literature. The data regarding human and vector populations was analysed (with and without using controls). Conclusions: The proposed mathematical model was able to simulate the dynamics of dengue transmission; it simulated the population-related behaviour ofAedes aegyptiand the affected people. This model could be a tool for scientifically supporting surveillance and control programmes' decision-making.


Assuntos
Animais , Humanos , Dengue/prevenção & controle , Dengue/transmissão , Modelos Teóricos , Aedes , Dinâmica Populacional
7.
Rev Salud Publica (Bogota) ; 14(3): 512-23, 2012 Jun.
Artigo em Espanhol | MEDLINE | ID: mdl-23912441

RESUMO

OBJECTIVE: A mathematical model is presented in this paper showing the dynamics of dengue transmission. The goal was to studyAedes aegyptipopulation behaviour and that of affected people to scientifically support the decision-making involved in surveillance and control programmes. METHODS: The proposed mathematical model involved eight differential equations having constant delays; each represented each population's variation either in humans or the mosquito vector. RESULTS: Two of the mathematical model's simulation scenarios are presented; they were solved by means of an algorithm implemented in MATLAB software. The data was obtained from the Colombian Statistics Department (DANE), the World Health Organisation (WHO) and from a review of the pertinent literature. The data regarding human and vector populations was analysed (with and without using controls). CONCLUSIONS: The proposed mathematical model was able to simulate the dynamics of dengue transmission; it simulated the population-related behaviour ofAedes aegyptiand the affected people. This model could be a tool for scientifically supporting surveillance and control programmes' decision-making.


Assuntos
Dengue/prevenção & controle , Dengue/transmissão , Modelos Teóricos , Aedes , Animais , Humanos , Dinâmica Populacional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...