Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmaceutics ; 9(4)2017 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-29023392

RESUMO

Tetrahydrocurcumin (THC), curcumin and calebin-A are curcuminoids found in turmeric (Curcuma longa). Curcuminoids have been established to have a variety of pharmacological activities and are used as natural health supplements. The purpose of this study was to identify the metabolism, excretion, antioxidant, anti-inflammatory and anticancer properties of these curcuminoids and to determine disposition of THC in rats after oral administration. We developed a UHPLC-MS/MS assay for THC in rat serum and urine. THC shows multiple redistribution phases with corresponding increases in urinary excretion rate. In-vitro antioxidant activity, histone deacetylase (HDAC) activity, histone acetyltransferase (HAT) activity and anti-inflammatory inhibitory activity were examined using commercial assay kits. Anticancer activity was determined in Sup-T1 lymphoma cells. Our results indicate THC was poorly absorbed after oral administration and primarily excreted via non-renal routes. All curcuminoids exhibited multiple pharmacological effects in vitro, including potent antioxidant activity as well as inhibition of CYP2C9, CYP3A4 and lipoxygenase activity without affecting the release of TNF-α. Unlike curcumin and calebin-A, THC did not inhibit HDAC1 and PCAF and displayed a weaker growth inhibition activity against Sup-T1 cells. We show evidence for the first time that curcumin and calebin-A inhibit HAT and PCAF, possibly through a Michael-addition mechanism.

2.
J Pharm Pharm Sci ; 18(4): 494-514, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26626247

RESUMO

PURPOSE: To develop a bioanalytical assay using RP-HPLC to quantify the curcuminoid calebin A, to characterize its pharmacokinetics in rats after intravenous (IV) and oral (PO) administration, to identify its pharmacological activities and to evaluate its content in natural health products. METHODS: An RP-HPLC method was developed for the detection of calebin A. Separation was carried out using a Phenomenex® Kinetex® C18 column with UV detection at 339 nm. An isocratic mobile phase consisting of acetonitrile and water with 10 mM ammonium formate (pH 7.0) (40:60, v/v) at a flow rate of 0.8 mL/min was employed. Linear standard curves were established and applied in the pharmacokinetic study. Calebin A was administered to male Sprague-Dawley (CD) rats IV (20 mg/kg) or PO (500 mg/kg) (n=4/route of administration). Serum and urine samples were collected for 72 h post dose. In vitro antioxidant activity, anti-inflammatory activity (cyclooxygenase and lipoxygenase inhibition), dipeptidyl peptidase-4 (DPP-4) inhibition and cytochrome P450 inhibitory activties of calebin A were examined using commercial assay kits. Content analysis of calebin A in 14 natural health products advertised to contain turmeric were carried out using methanolic extraction. RESULTS: The HPLC method was successfully applied to a pharmacokinetic study of calebin A in rats. After IV and PO administration of calebin A, the compound was detected as the aglycone and a glucuronidated metabolite. Oral bioavailabitily was found to be ~0.5%, serum half-life was ~1-3 h. Calebin A appears to be primarily excreted via non-renal routes. Calebin A possessed concentration-dependent antioxidant activity and DPP-4 inhibition. Calebin A appears to be a non-selective cyclooxygenase inhibitor and also a poor lipoxygenase inhibitor. The curcuminoid displayed in vitro interactions with CYP2D6 and CYP1A2. Content analysis of 14 natural health products that claimed to contain turmeric showed that concentration of calebin A was inconsistent among the products. CONCLUSION: A successful assay was developed for the detection of calebin A using RP-HPLC. Preliminary pharmacokinetic studies indicate that an unoptimised formulation of calebin A has poor oral bioavailability. Calebin A exhibits various pharmacological activities. This article is open to POST-PUBLICATION REVIEW. Registered readers (see "For Readers") may comment by clicking on ABSTRACT on the issue's contents page.


Assuntos
Anti-Inflamatórios/farmacocinética , Antioxidantes/farmacocinética , Cromatografia Líquida de Alta Pressão/métodos , Cinamatos/farmacocinética , Monoterpenos/farmacocinética , Administração Intravenosa , Administração Oral , Animais , Anti-Inflamatórios/administração & dosagem , Anti-Inflamatórios/farmacologia , Antioxidantes/administração & dosagem , Antioxidantes/farmacologia , Disponibilidade Biológica , Cinamatos/administração & dosagem , Cinamatos/farmacologia , Meia-Vida , Masculino , Monoterpenos/administração & dosagem , Monoterpenos/farmacologia , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...