Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microorganisms ; 9(5)2021 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-34067081

RESUMO

The genus Vibrio comprises pathogens ubiquitous to marine environments. This study evaluated the cultivable Vibrio community in the Guanabara Bay (GB), a recreational, yet heavily polluted estuary in Rio de Janeiro, Brazil. Over one year, 66 water samples from three locations along a pollution gradient were investigated. Isolates were identified by MALDI-TOF mass spectrometry, revealing 20 Vibrio species, including several potential pathogens. Antimicrobial susceptibility testing confirmed resistance to aminoglycosides, beta-lactams (including carbapenems and third-generation cephalosporins), fluoroquinolones, sulfonamides, and tetracyclines. Four strains were producers of extended-spectrum beta-lactamases (ESBL), all of which carried beta-lactam and heavy metal resistance genes. The toxR gene was detected in all V. parahaemolyticus strains, although none carried the tdh or trh genes. Higher bacterial isolation rates occurred in months marked by higher water temperatures, lower salinities, and lower phosphorus and nitrogen concentrations. The presence of non-susceptible Vibrio spp. was related to indicators of eutrophication and sewage inflow. DNA fingerprinting analyses revealed that V. harveyi and V. parahaemolyticus strains non-susceptible to antimicrobials might persist in these waters throughout the year. Our findings indicate the presence of antimicrobial-resistant and potentially pathogenic Vibrio spp. in a recreational environment, raising concerns about the possible risks of human exposure to these waters.

2.
Microorganisms ; 8(12)2020 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-33322780

RESUMO

Marine sponges are excellent examples of invertebrate-microbe symbioses. In this holobiont, the partnership has elegantly evolved by either transmitting key microbial associates through the host germline and/or capturing microorganisms from the surrounding seawater. We report here on the prokaryotic microbiota during different developmental stages of Plakina cyanorosea and their surrounding environmental samples by a 16S rRNA metabarcoding approach. In comparison with their source adults, larvae housed slightly richer and more diverse microbial communities, which are structurally more related to the environmental microbiota. In addition to the thaumarchaeal Nitrosopumilus, parental sponges were broadly dominated by Alpha- and Gamma-proteobacteria, while the offspring were particularly enriched in the Vibrionales, Alteromonodales, Enterobacterales orders and the Clostridia and Bacteroidia classes. An enterobacterial operational taxonomic unit (OTU) was the dominant member of the strict core microbiota. The most abundant and unique OTUs were not significantly enriched amongst the microbiomes from host specimens included in the sponge microbiome project. In a wider context, Oscarella and Plakina are the sponge genera with higher divergence in their associated microbiota compared to their Homoscleromorpha counterparts. Our results indicate that P. cyanorosea is a low microbial abundance sponge (LMA), which appears to heavily depend on the horizontal transmission of its microbial partners that likely help the sponge host in the adaptation to its habitat.

3.
An Acad Bras Cienc ; 90(4): 3813-3829, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30379271

RESUMO

Microorganisms associated with organic management are essential in nutrient transformation and release for plant use. The present study aimed to isolate, identify and characterize plant growth promoting diazotrophic rhizobacteria associated with sugarcane under organic management. Rhizospheres of organic sugarcane varieties IAC 911099 and CTC4 were sampled and inoculated onto nitrogen free NFb and Burk media. The isolated microorganisms were screened in vitro concerning their ability to produce plant growth promoting factors. Eighty-one bacteria were isolated; 45.6% were positive for the nifH gene and produced at least one of the evaluated plant growth promotion factors. The production of indole-3-acetic acid was observed in 46% of the isolates, while phosphate solubilization was observed in 86.5%. No isolates were hydrogen cyanide producers, while 81% were ammonia producers, 19% produced cellulases and 2.7%, chitinases. Microorganisms belonging to the Burkholderia genus were able to inhibit Fusarium moniliforme growth in vitro. Plant growth promoting microorganisms associated with organic sugarcane, especially belonging to Burkholderia, Sphingobium, Rhizobium and Enterobacter genera, can be environmentally friendly alternatives to improve sugarcane production.


Assuntos
Agricultura Orgânica/métodos , Desenvolvimento Vegetal/fisiologia , Reguladores de Crescimento de Plantas/fisiologia , Saccharum/crescimento & desenvolvimento , Microbiologia do Solo , Burkholderia/fisiologia , Rhizobium/fisiologia , Rizosfera , Saccharum/microbiologia , Sphingobacterium/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...