Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 13(12)2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38931086

RESUMO

Discussing homology relationships among secretory structures remains a relatively underexplored area in botanical research. These structures are widely dispersed within Malpighiales, one of the largest orders of eudicots. Within Malpighiales, both extranuptial and nuptial nectaries are present, and they do not seem homoplastic or share evolutionary connections. Particularly in Malpighiaceae, extensive research has focused on the ecological interactions mediated by glands. Botanists largely agree that elaiophores in sepals of Neotropical Malpighiaceae have evolved from extrafloral nectaries on leaves. However, the evolutionary origin of elaiophores has yet to be thoroughly examined, particularly in comparison to outgroups. This study provides empirical evidence on the ontogeny of elaiophores and investigates their evolutionary origins and homology relationships across different lineages of Malpighiales using comparative anatomy. Our findings suggest that elaiophores are likely homologous to extranuptial nectaries found in sepals of other Malpighiales lineages, originating from nectaries on leaves. This discussion is a starting point for future studies exploring the evolution of nectaries found in flowers, whether extranuptial or nuptial, and their potential origins from nectaries in vegetative organs such as leaves. Understanding these relationships could shed light on the selective pressures influencing floral morphologies.

2.
Plants (Basel) ; 9(12)2020 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-33322562

RESUMO

In most species of Pleurothallidinae, the self-incompatibility site occurs in the stylar canal inside the column, which is typical of gametophytic self-incompatibility (GSI). However, in some species of Acianthera, incompatible pollen tubes with anomalous morphology reach the ovary, as those are obstructed in the column. We investigated if a distinct self-incompatibility (SI) system is acting on the ovary of A. johannensis, which is a species with partial self-incompatibility, contrasting with a full SI species, A. fabiobarrosii. We analyzed the morphology and development of pollen tubes in the column, ovary, and fruit using light, epifluorescence, and transmission electron microscopy. Our results show that the main reaction site in A. johannensis is in the stylar canal inside the column, which was also recorded in A. fabiobarrosii. Morphological and cytological characteristics of the pollen tubes with obstructed growth in the column indicated a process of programmed cell death in these tubes, showing a possible GSI reaction. In addition, partially self-incompatible individuals of A. johannensis exhibit a second SI site in the ovary. We suggest that this self-incompatibility site in the ovary is only an extension of GSI that acts in the column, differing from the typical late-acting self-incompatibility system recorded in other plant groups.

3.
Protoplasma ; 256(4): 971-981, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30796515

RESUMO

Caryocar brasiliense is a flagship species of the Brazilian Cerrado. It produces flowers with a strong peculiar scent, which are pollinated by bats and occasionally moths with short mouthparts. However, the cues responsible for attracting these nocturnal pollinators remain unknown. We aimed to identify osmophores of C. brasiliense, describe the ultrastructure of the cells involved in the synthesis and release of floral odour, and identify the constituents of the floral bouquet. We performed field observations and histochemical and ultrastructural analyses of flowers focusing on the androecium. Gas chromatography-mass spectrometry was used to analyse the scents emitted. Filament epidermal cells were found to possess an unusual shape and be responsible for the main production and release of odour. These cells, called foraminous cells, are elongate and possess pores where their cell walls are abruptly thin. The cuticle is practically absent over the pores, which facilitates odour emission. The foraminous cells have conspicuous nuclei and organelle-rich cytoplasm where oil droplets can be seen prior to anthesis. The features of these cells remain similar during anthesis, but many vesicles fuse with the plasma membrane and the number of oil droplets in the cytosol decreases. Twenty-nine components were found in the scent, especially fatty acid derivatives and N- and S-bearing compounds. Our analyses revealed that the androecium of C. brasiliense has a particular structure that acts as an osmophore. The scent from the androecium resembles that of the entire flower, which is an unprecedented finding for a plant with single flowers as the pollination unit.


Assuntos
Ericales/ultraestrutura , Flores/ultraestrutura , Odorantes/análise , Compostos Orgânicos Voláteis/análise , Ericales/fisiologia , Flores/química , Flores/citologia , Flores/fisiologia , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Células Vegetais/fisiologia , Células Vegetais/ultraestrutura , Polinização , Compostos Orgânicos Voláteis/química
4.
Protoplasma ; 254(4): 1563-1578, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27885443

RESUMO

The mobilization of palm seed reserves is a complex process because of the abundance and diversity of stored compounds and results from the development of a highly specialized haustorium. This work focused on the important Neotropical oleaginous palm Acrocomia aculeata, with the aim of defining phases of seedling development associated with mobilization of reserves and elucidating the role of haustorium and endosperm in this process. Standard methods were performed, including biometric, anatomical, and histochemical analyses, as well as the evaluation of the activities of the enzymes endo-ß-mannanase and lipase, throughout the reserve mobilization in seeds during germination and in seedlings. Seeds of A. aculeata stored large quantities of proteins, lipids, and polysaccharides in the embryo and endosperm. The mobilization of reserves initiated in the haustorium during germination and subsequently occurred in the endosperm adjacent to the haustorium, forming a gradually increasing zone of digestion. Proteins and polysaccharides were the first to be mobilized, followed by lipids and cell wall constituents. The haustorium activates and controls the mobilization, forming transitory reserves and translocating them to the vegetative axis, while the endosperm, which also has an active role, serves as a site of intense enzymatic activity associated with protein bodies. Seedling development can be described as occurring in six phases over a long period (approximately 150 days) due to the large amount of seed reserves. This process exhibits an alternation between stages of accumulation and translocation of protein, lipid, and carbohydrate reserves in the haustorium, which favors the seedling establishment and the reproductive success of the species.


Assuntos
Arecaceae/crescimento & desenvolvimento , Endosperma/crescimento & desenvolvimento , Plântula/crescimento & desenvolvimento , Ácido Abscísico , Arecaceae/citologia , Arecaceae/enzimologia , Endosperma/citologia , Endosperma/enzimologia , Metabolismo Energético , Germinação , Manosidases/metabolismo , Proteínas de Plantas/metabolismo , Plântula/citologia , Plântula/enzimologia
5.
C R Biol ; 337(1): 62-70, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24439552

RESUMO

Malpighiaceae ovules have a well-developed nucellus; previous observations indicate that during seed development, the endosperm does not proliferate, thus, remaining scarce. This study aimed at identifying the nutritive tissues during seed development in Malpighiaceae, focusing especially on the endosperm. We analysed the seed development of Janusia mediterranea, J. occhionii, Mascagnia cordifolia, and Tetrapterys chamaecerasifolia, which were collected and processed by traditional methods for light microscopy. Ovules are subcampylotropous, crassinucellate and unitegmic in Janusia and bitegmic in M. cordifolia and T. chamaecerasifolia. The nucellus is well developed and protrudes through the micropyle, touching the funicular obturator. During development, a pachychalaza is formed, and the integuments coalesce in bitegmic species. Through a series of nucellar cell divisions, the perisperm is formed. In Janusia species, the endosperm is not produced. In M. cordifolia and T. chamaecerasifolia, the endosperm is nuclear, but it is scarce and ephemeral. The mature seed is exalbuminous, and the perisperm is consumed, and thus, the mature embryo is total. The absence of endosperm in Janusia is newly observed for the family and indicates functional transfer for the abundant perisperm.


Assuntos
Malpighiaceae/fisiologia , Sementes/crescimento & desenvolvimento , Brasil , Endosperma , Flores/química , Frutas/química , Histocitoquímica , Malpighiaceae/genética , Valor Nutritivo , Óvulo Vegetal/química , Sementes/química
6.
Micron ; 44: 312-6, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22940570

RESUMO

Melanins are dark, insoluble pigments that are resistant to concentrated acids and bleaching by oxidising agents. Phytomelanin (or phytomelan) is present in the seed coat of some Asparagales and in the fruits of some Compositae. In Compositae fruits, melanin is deposited in the schizogenous spaces between the hypodermis and underlying fibrous layer. Phytomelanin in Compositae is poorly understood, and there are only speculations regarding the cells that produce the pigment and the cellular processes involved in the secretion and polymerisation of phytomelanin. This report describes the cellular processes involved in the secretion of phytomelanin in the pericarp of Praxelis diffusa, a species with a structure typical of the family. The ovaries and fruits at different stages were fixed and processed according to the standard methods of studies of light microscopy and transmission electron microscopy. Hypodermal cells have abundant rough endoplasmic reticulum and mitochondria, and the nuclei have chromatin that is less dense than other cells. These characteristics are typical of cells that synthesise protein/amino acids and suggest no carbohydrate secretion. The fibres, however, have a dense cytoplasm rich in the Golgi bodies that are associated with vesicles and smooth endoplasmic reticulum, common characteristics of carbohydrate secretory cells. Our results indicate that the hypodermal cells are not responsible for the secretion of phytomelanin, as previously described in the literature; in contrast, this function is assigned to the adjacent fibres, which have an organisation typical of cells that secrete carbohydrates.


Assuntos
Asteraceae/metabolismo , Flores/metabolismo , Melaninas/metabolismo , Tela Subcutânea/metabolismo , Citoplasma , Retículo Endoplasmático , Complexo de Golgi , Melaninas/biossíntese , Microscopia Eletrônica de Transmissão , Mitocôndrias
7.
Rev Biol Trop ; 60(1): 505-13, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22458243

RESUMO

Connarus suberosus is a typical species of the Brazilian Cerrado biome, and its inflorescences and young vegetative branches are densely covered by dendritic trichomes. The objective of this study was to report the occurrence of a previously undescribed glandular trichome of this species. The localization, origin and structure of these trichomes were investigated under light, transmission and scanning electron microscopy. Collections were made throughout the year, from five adult specimens of Connarus suberosus near Botucatu, São Paulo, Brazil, including vegetative and reproductive apices, leaves and fruits in different developmental stages, as well as floral buds and flowers at anthesis. Glandular trichomes (GTs) occurred on vegetative and reproductive organs during their juvenile stages. The GTs consisted of a uniseriate, multicellular peduncle, whose cells contain phenolic compounds, as well as a multicellular glandular portion that accumulates lipids. The glandular cell has thin wall, dense cytoplasm (with many mitochondria, plastids and dictyosomes), and a large nucleus with a visible nucleolus. The starch present in the plastids was hydrolyzed during the synthesis phase, reducing the density of the plastid stroma. Some plastids were fused to vacuoles, and some evidence suggested the conversion of plastids into vacuoles. During the final activity stages of the GTs, a darkening of the protoplasm was observed in some of the glandular cells, as a programmed cell death; afterwards, became caducous. The GTs in C. suberosus had a temporal restriction, being limited to the juvenile phase of the organs. Their presence on the exposed surfaces of developing organs and the chemical nature of the reserve products, suggest that these structures are food bodies. Field observations and detailed studies of plant-environment interactions, as well as chemical analysis of the reserve compounds, are still necessary to confirm the role of these GTs as feeding rewards.


Assuntos
Connaraceae/ultraestrutura , Brasil , Connaraceae/química , Connaraceae/classificação , Microscopia Eletrônica
8.
Methods Mol Biol ; 689: 37-49, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21153785

RESUMO

It is often necessary to process large plant samples for light microscopy studies, but due to structural characteristics of plant tissues, especially intercellular spaces, large vacuoles, and phenolic substances, results are often unsatisfactory. When large samples are embedded in glycol methacrylate (GMA), their core may not polymerize, remaining soft and moist and making it difficult to cut microtome sections. This situation has been erroneously interpreted as the result of poor infiltration, when the soft core of these samples is actually the result of incomplete polymerization. While GMA is in fact present inside samples, unsatisfactory polymerization results from rapid external polymerization that does not allow sufficient hardener to reach the sample core, while the relatively large volume of GMA inside the tissue block also dilutes the hardener. In this chapter we propose a new method for processing large plant specimens that avoids these problems by: (1) slowing the polymerization process through cooling in order to permit the penetration of hardener into the sample core and (2) increasing the hardener:GMA ratio to aid polymerization of the sample core.


Assuntos
Metacrilatos/química , Polimerização , Rizoma/anatomia & histologia , Inclusão do Tecido/métodos , Zingiber officinale/anatomia & histologia , Dessecação/métodos , Microtomia/métodos , Fixação de Tecidos/métodos
9.
Ann Bot ; 98(1): 213-7, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16684799

RESUMO

BACKGROUND AND AIMS: The occurrence of stomata in seed coats is uncommon and there is limited information about their function(s). The aim of this study was to verify the distribution of stomata in seed coats of Swietenia macrophylla and to relate it to the imbibition process and aspects of the structure of the outer integument layers. METHODS: For the structural and ultrastructural studies, the seeds were processed using the usual techniques and studied under light and scanning electron microscopes. Histochemical tests were employed to identify the cell wall composition in the different seed coat portions. To assess the role of the stomata in the imbibition, non-impervious seeds were compared with partially impervious ones, in which only the embryo, median or hilar regions were left free. Further, the apoplastic pathway marker was employed to confirm the role of the stomata as sites of water passage during imbibition. KEY RESULTS: A positive relationship was observed between seed coat thickness and stomata density. The stomata were devoid of movement, with a large pore. They occurred in large numbers in the embryo region and extended with lower frequency towards the wing. Imbibition rates were related to stomata density, suggesting that the stomata act as preferential sites for water entry in the S. macrophylla seeds. CONCLUSIONS: At maturity, the stomata in the seed coat play a significant role in seed imbibition. The data may also infer that these permanently opened stomata have an important role in gas exchange during seed development, aiding embryo respiration.


Assuntos
Meliaceae/embriologia , Sementes/fisiologia , Água/metabolismo , Parede Celular/metabolismo , Meliaceae/anatomia & histologia , Meliaceae/fisiologia , Microscopia Eletrônica de Varredura , Sementes/anatomia & histologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...