Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 8(11): e11566, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36425434

RESUMO

Pseudomonas aeruginosa is a ubiquitous microorganism, capable of colonizing a wide range of habitats due to its metabolic versatility and wide adaptability to different conditions. Industrial and environmental research involving petroleum microbiology play a pivotal role in controlling many technical, operational, and environmental issues. P. aeruginosa PA1-Petro strain was isolated from oil production water in Northeastern Brazil. Herein we report the genomic sequencing and annotation of PA1-Petro, and a comparative genomics study against two widely used reference P. aeruginosa strains (PAO1 and PA14). PA1-Petro has a genome of 6,893,650 bp, the largest among the three analyzed in this study, with a 65.87% GC content. The analyzes resulted in a wide repertoire of 544 unique genes in PA1-Petro, and the highest copy numbers of common genes among the three strains (PA1-Petro, PAO1 and PA14). Unique sequences are hypothetical proteins, prophage sequences, mobile genetic elements, transcriptional regulators, metal resistance genes to copper, tellurium and arsenic, type IE CRISPR-Cas, Type VI Secretion System (T6SS)-associated proteins, and a toxin-antitoxin system. Taken together, these results provide intriguing insights on adaptive evolution within PA1-Petro genome, adding unprecedented information to the species' plasticity and ubiquitous characteristics.

2.
Curr Genet ; 68(2): 289-304, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35094149

RESUMO

Pseudomonas aeruginosa is an opportunistic pathogen and an important model organism for the study of bacterial group behaviors, including cell motility and biofilm formation. Rhamnolipids play a pivotal role in biofilm formation and motility phenotypes in P. aeruginosa, possibly acting as wetting agents and mediating chemotactic stimuli. However, no biochemical mechanism or gene regulatory network has been investigated in regard to rhamnolipids' modulation of those group behaviors. Using DNA microarrays, we investigated the transcriptomic profiles in the stationary phase of growth of wild-type P. aeruginosa PAO1 and a rhlA-mutant strain, unable to produce rhamnolipids. A total of 134 genes were differentially expressed, comprising different functional categories, indicating a significant physiological difference between the rhamnolipid-producing and -non-producing strains. Interestingly, several flagellar genes are repressed in the mutant strain, which directly relates to the inability of the rhlA-minus strain to develop a swarming-motility phenotype. Supplementation with exogenous rhamnolipids has partially restored flagellar gene expression in the mutant strain. Our results show significant evidence that rhamnolipids, the major biosynthetic products of rhlABC pathway, seem to modulate gene expression in P. aeruginosa.


Assuntos
Glicolipídeos , Pseudomonas aeruginosa , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Glicolipídeos/genética , Glicolipídeos/metabolismo , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...