Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pest Manag Sci ; 79(3): 1204-1212, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36412537

RESUMO

BACKGROUND: Chemical control is commonly used against Euschistus heros (F.) and Chrysodeixis includens (Walker) in soybean fields in South America. However, previous studies reported that these pests have reduced susceptibility to pyrethroids in Brazil. On this basis, we developed and evaluated nanoencapsulated-based bifenthrin (BFT) and λ-cyhalothrin (LAM) with the synergists piperonyl butoxide (PBO) and diethyl maleate (DEM) for insect resistance management (IRM). RESULTS: Nanoformulations of BFT and LAM with PBO and DEM presented good physical-chemical characteristics and were stable. The spherical morphology of all systems and the encapsulation efficiency in nanostructured lipid carriers did not change when synergists were added. Nanoencapsulated BFT with DEM applied topically increased the susceptibility of E. heros to BFT by 3.50-fold. Similarly, nanoencapsulated BFT and LAM with PBO in diet-overlay bioassays increased the susceptibility of C. includens to both chemicals by up to 2.16-fold. Nanoencapsulated BFT and LAM with synergists also improve control efficacy of both species, causing higher mortality than commercial products containing these chemistries. CONCLUSIONS: It is possible to develop nanoencapsulated-based formulations of BFT and LAM with PBO or DEM, and these nanoformulations have the potential to improve control of E. heros and C. includens with recognized low susceptibility to pyrethroids. This study provides updates for designing new insecticide formulations for IRM. © 2022 Society of Chemical Industry.


Assuntos
Heterópteros , Inseticidas , Piretrinas , Animais , Inseticidas/farmacologia , Glycine max , Piretrinas/farmacologia , Resistência a Inseticidas
2.
ACS Appl Bio Mater ; 5(3): 1273-1283, 2022 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-35167254

RESUMO

The most important arboviruses are those that cause dengue, yellow fever, chikungunya, and Zika, for which the main vector is the Aedes aegypti mosquito. The use of repellents is an important way to combat mosquito-borne pathogens. In this work, a safe method of protection employing a repellent was developed based on a slow release system composed of zein nanoparticles containing the active agents icaridin and geraniol incorporated in a cellulose gel matrix. Analyses were performed to characterize the nanoparticles and the gel formulation. The nanoparticles containing the repellents presented a hydrodynamic diameter of 229 ± 9 nm, polydispersity index of 0.38 ± 0.10, and zeta potential of +29.4 ± 0.8 mV. The efficiencies of encapsulation in the zein nanoparticles exceeded 85% for icaridin and 98% for geraniol. Rheological characterization of the gels containing nanoparticles and repellents showed that the viscoelastic characteristic of hydroxypropylmethylcellulose gel was preserved. Release tests demonstrated that the use of nanoparticles in combination with the gel matrix led to improved performance of the formulations. Atomic force microscopy analyses enabled visualization of the gel network containing the nanoparticles. Cytotoxicity assays using 3T3 and HaCaT cell cultures showed low toxicity profiles for the active agents and the nanoparticles. The results demonstrated the potential of these repellent systems to provide prolonged protection while decreasing toxicity.


Assuntos
Aedes , Arbovírus , Repelentes de Insetos , Nanopartículas , Zeína , Infecção por Zika virus , Zika virus , Monoterpenos Acíclicos , Animais , Celulose/farmacologia , Hidrogéis , Repelentes de Insetos/farmacologia , Mosquitos Vetores , Piperidinas
3.
Front Pharmacol ; 12: 760682, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34707504

RESUMO

Arboviral diseases are a threat to global public health systems, with recent data suggesting that around 40% of the world's population is at risk of contracting arboviruses. The use of mosquito repellents is an appropriate strategy to avoid humans coming into contact with vectors transmitting these viruses. However, the cost associated with daily applications of repellents can make their use unfeasible for the low-income populations that most need protection. Therefore, the development of effective formulations offers a way to expand access to this means of individual protection. Consequently, research efforts have focused on formulations with smaller quantities of active agents and sustained release technology, aiming to reduce re-applications, toxicity, and cost. The present study investigates the development of nanostructured lipid carriers (NLCs) loaded with a mixture of the compounds icaridin (synthetic) and geraniol (natural), incorporated in cellulose hydrogel. The NLCs were prepared by the emulsion/solvent evaporation method and were submitted to physicochemical characterization as a function of time (at 0, 15, 30, and 60 days). The prepared system presented an average particle size of 252 ± 5 nm, with encapsulation efficiency of 99% for both of the active compounds. The stability profile revealed that the change of particle size was not significant (p > 0.05), indicating high stability of the system. Rheological characterization of the gels containing NLCs showed that all formulations presented pseudoplastic and thixotropic behavior, providing satisfactory spreadability and long shelf life. Morphological analysis using atomic force microscopy (AFM) revealed the presence of spherical nanoparticles (252 ± 5 nm) in the cellulose gel matrix. Permeation assays showed low fluxes of the active agents through a Strat-M® membrane, with low permeability coefficients, indicating that the repellents would be retained on the surface to which they are applied, rather than permeating the tissue. These findings open perspectives for the use of hybrid formulations consisting of gels containing nanoparticles that incorporate repellents effective against arthropod-borne virus. These systems could potentially provide improvements considering the issues of effectiveness, toxicity, and safety.

4.
J Nanobiotechnology ; 19(1): 163, 2021 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-34059056

RESUMO

BACKGROUND: Ascorbic acid (AA) is a micronutrient essential for the mechanisms of reproduction, growth, and defense in fish. However, the biosynthesis of this micronutrient does not occur in fish, so it must be supplied with food. A difficulty is that plain AA is unstable, due to the effects of light, high temperature, and oxygen, among others. The use of nanoencapsulation may provide protection and preserve the physicochemical characteristics of AA for extended periods of time, decreasing losses due to environmental factors. METHOD: This study evaluated the protective effect of nanoencapsulation in polymeric nanoparticles (chitosan and polycaprolactone) against AA degradation. Evaluation was made of the physicochemical stability of the nanoformulations over time, as well as the toxicological effects in zebrafish (Danio rerio), considering behavior, development, and enzymatic activity. For the statistical tests, ANOVA (two-way, significance of p < 0.05) was used. RESULTS: Both nanoparticle formulations showed high encapsulation efficiency and good physicochemical stability during 90 days. Chitosan (CS) and polycaprolactone (PCL) nanoparticles loaded with AA had mean diameters of 314 and 303 nm and polydispersity indexes of 0.36 and 0.28, respectively. Both nanosystems provided protection against degradation of AA exposed to an oxidizing agent, compared to plain AA. Total degradation of AA was observed after 7, 20, and 480 min for plain AA, the CS nanoparticle formulation, and the PCL nanoparticle formulation, respectively. For zebrafish larvae, the LC50 values were 330.7, 57.4, and 179.6 mg/L for plain AA, the CS nanoparticle formulation, and the PCL nanoparticle formulation, respectively. In toxicity assays using AA at a concentration of 50 mg/L, both types of nanoparticles loaded with AA showed lower toxicity towards the development of the zebrafish, compared to plain AA at the same concentration. Although decreased activity of the enzyme acetylcholinesterase (AChE) did not affect the swimming behavior of zebrafish larvae in the groups evaluated, it may have been associated with the observed morphometric changes, such as curvature of the tail. CONCLUSIONS: This study showed that the use of nanosystems is promising for fish nutritional supplementation in aquaculture. In particular, PCL nanoparticles loaded with AA seemed to be most promising, due to higher protection against AA degradation, as well as lower toxicity to zebrafish, compared to the chitosan nanoparticles. The use of nanotechnology opens new perspectives for aquaculture, enabling the reduction of feed nutrient losses, leading to faster fish growth and improved sustainability of this activity.


Assuntos
Ácido Ascórbico/toxicidade , Nanopartículas/toxicidade , Polímeros/toxicidade , Animais , Aquicultura , Quitosana , Portadores de Fármacos , Ecotoxicologia , Cinética , Micronutrientes , Tamanho da Partícula , Poliésteres/toxicidade , Peixe-Zebra
5.
J Agric Food Chem ; 69(16): 4564-4577, 2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33848162

RESUMO

Bacillus thuringiensis (Bt) has been recognized for its high potential in the control of various agricultural pests. Developments in micro/nanotechnology have opened new perspectives for the production of more efficient formulations that can overcome some obstacles associated with its use in the field, such as formulation instability and loss of activity as a result of the degradation of pesticidal protein by its exposure to ultraviolet radiation, among other problems. This review describes current studies and recent discoveries related to Bt and processes for the encapsulation of Bt derivatives, such as Cry pesticidal proteins. Different techniques are described, such as extrusion, emulsion, spray drying, spray cooling, fluidized bed, lyophilization, coacervation, and electrospraying to obtain micro- and nanoparticulate systems. It is noteworthy that products based on microorganisms present less risk to the environment and non-target organisms. However, systematic risk assessment studies of these new Bt biopesticides are necessary, considering issues, such as interactions with other organisms, the formation of toxic secondary metabolites, or the interspecific transfer of genetic material. Given the great potential of these new formulations, a critical assessment is provided for their future use, considering the technological challenges that must be overcome to achieve their large-scale production for efficient agricultural use.


Assuntos
Bacillus thuringiensis , Toxinas de Bacillus thuringiensis , Proteínas de Bactérias , Endotoxinas , Proteínas Hemolisinas , Controle Biológico de Vetores , Raios Ultravioleta
6.
ACS Omega ; 5(25): 15557-15566, 2020 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-32637831

RESUMO

The supply of food derived from aquaculture has increased significantly in recent years. The aim of this industrial sector is to produce sustainable products to meet the needs of consumers, providing food security and nutritional benefits. The development of aquaculture has faced challenges including disease outbreaks that can cause substantial economic losses. These diseases can be controlled using chemicals such as antibiotics. However, the indiscriminate use of these substances can have major negative impacts on human health and the environment with the additional risk of the emergence of resistant organisms. The present manuscript describes the use of phytotherapy in association with nanotechnology in order to obtain a more effective and less harmful system for the control of bacterial diseases in fish. Zein nanoparticles associated with eugenol and garlic essential oil were prepared through antisolvent precipitation and characterized. Zein nanoparticles are promising carrier systems as zein proteins are biodegradable and biocompatible and, in this way, good candidates for encapsulation of active ingredients. The system presented good physicochemical properties with an average particle diameter of approximately 150 nm, a polydispersity index lower than 0.2, and a zeta potential of approximately 30 mV. High encapsulation efficiency was obtained for the active compounds with values higher than 90%, and the compounds were protected against degradation during storage (90 days). The nanoparticle formulations containing the botanical compounds also showed less toxicity in the tests performed with a biomarker (Artemia salina). In addition, the systems showed bactericidal activity against the important fish pathogenic bacteria Aeromonas hydrophila, Edwardsiella tarda, and Streptococcus iniae in vitro. The present study opens new perspectives for the use of botanical compounds in combination with nanotechnology to treat fish diseases caused by bacteria, contributing to a more sustainable fish chain production.

7.
Toxicol In Vitro ; 65: 104755, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31881238

RESUMO

Goethite (α-FeOOH) brings important perspectives in environmental remediation, as, due to its physicochemical properties, this iron oxide can adsorb a wide variety of compounds, including glyphosate. This study aimed to evaluate the effects of goethite nanoparticles (NPs), glyphosate (Gly), Roundup® (Rd), and co-exposures (Gly + NPs and Rd + NPs) on zebrafish liver cell line (ZFL). ZFL cells were exposed to NPs (1, 10, and 100 mg L-1), Gly (3.6 mg L-1), Rd (10 mg L-1), and co-exposures (Gly + NPs and Rd + NPs), or only to saline for 1, 6, and 12 h. Cell viability was assessed by Trypan blue, MTT, and neutral red assays. The generation of reactive oxygen species and total antioxidant capacity were also determined, while genotoxicity was quantified by the comet assay. Both NPs and Rd in isolation produced cytotoxic effects at 6 h and genotoxic effects at 1 and 6 h. Rd + NPs resulted in synergistic effects, intensifying the toxicity. Cells exposed to Gly did not present toxic effects and Gly + NPs resulted in the suppression of toxic effects observed for NPs. The presence of other components in Roundup® seems to favor its toxicity compared to the active ingredient. In conclusion, according to the in vitro model, the concentrations used were not safe for the ZFL lineage.


Assuntos
Glicina/análogos & derivados , Hepatócitos/efeitos dos fármacos , Herbicidas/toxicidade , Compostos de Ferro/administração & dosagem , Minerais/administração & dosagem , Nanopartículas/administração & dosagem , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Dano ao DNA , Glicina/toxicidade , Hepatócitos/metabolismo , Mitocôndrias/efeitos dos fármacos , Peixe-Zebra , Glifosato
8.
Pest Manag Sci ; 75(7): 1855-1865, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30653814

RESUMO

BACKGROUND: Botanical compounds from plant species are known to have pesticidal activity and have been used in integrated pest management programs. The varied spectrum of the pesticidal action of these compounds can also avoid selection of resistance in pest populations. In this study, mixtures of the botanical compounds geraniol, eugenol and cinnamaldehyde were encapsulated in zein nanoparticles to improve their stability and efficiency. Biological effects of the nano-scale formulations of the botanical compounds were evaluated against two agricultural pests: the two-spotted spider mite (Tetranychus urticae) and the soybean looper (Chrysodeixis includes). RESULTS: The formulations were stable over time (120 days) with a high encapsulation efficiency (>90%). Nanoencapsulation also provided protection against degradation of the compounds during storage and led to a decrease in toxicity to non-target organisms. The release of the compounds (especially eugenol and cinnamaldehyde) from the nanoparticles was directly influenced by temperature, and the main mechanism of release was through a diffusion-based process. Nanoencapsulated compounds also showed superior efficiency compared to the emulsified compounds in terms of repellency and insecticidal activity. CONCLUSION: The findings of this study indicate that the convergence of botanical compounds with nano-scale formulation has the potential to improve efficacy for their sustainable use in integrated pest management in agriculture. © 2019 Society of Chemical Industry.


Assuntos
Acaricidas , Inseticidas , Mariposas/efeitos dos fármacos , Nanopartículas/química , Tetranychidae/efeitos dos fármacos , Zeína/química , Acroleína/análogos & derivados , Acroleína/química , Acroleína/farmacologia , Monoterpenos Acíclicos , Animais , Linhagem Celular , Cricetulus , Portadores de Fármacos , Eugenol/química , Eugenol/farmacologia , Larva/efeitos dos fármacos , Camundongos , Temperatura , Terpenos/química , Terpenos/farmacologia
9.
Sci Rep ; 8(1): 7964, 2018 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-29765062

RESUMO

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper.

10.
Sci Rep ; 8(1): 7623, 2018 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-29769620

RESUMO

Pesticides are the main tactics for pest control because they reduce the pest population very fast and their efficiency does not depend on abiotic factors. However, the indiscriminate use of these substances can speed up the development of resistant populations and causing environmental contamination. Therefore, alternative methods of pest control are sought, such as the use of botanical compounds. Nanoencapsulation of volatile compounds has been shown to be an important tool that can be used to overcome the lack of stability of these compounds. In this work, we describe the preparation and characterization of chitosan nanoparticles functionalized with ß-cyclodextrin containing carvacrol and linalool. The toxicity and biological activity were evaluated. Decreases of toxicity were observed when the compounds were nanoencapsulated. The nanoparticles presented insecticidal activity against the species Helicoverpa armigera (corn earworm) and Tetranychus urticae (spider mite). In addition, repellent activity and reduction in oviposition were observed for the mites.


Assuntos
Quitosana/química , Inseticidas/farmacologia , Monoterpenos/farmacologia , Mariposas/crescimento & desenvolvimento , Nanopartículas/administração & dosagem , Controle Biológico de Vetores , Tetranychidae/crescimento & desenvolvimento , beta-Ciclodextrinas/química , Monoterpenos Acíclicos , Animais , Agentes de Controle Biológico/química , Agentes de Controle Biológico/farmacologia , Sobrevivência Celular , Cimenos , Mariposas/efeitos dos fármacos , Nanopartículas/química , Tetranychidae/efeitos dos fármacos
11.
Sci Rep ; 8(1): 2067, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29391538

RESUMO

Carvacrol and linalool are natural compounds extracted from plants and are known for their insecticidal and repellent activities, respectively. However, their low aqueous solubility, high photosensitivity, and high volatility restrict their application in the control of agricultural pests. The encapsulation of volatile compounds can be an effective way of overcoming such problems. Inclusion complexes between beta-cyclodextrin (ß-CD) and carvacrol (CVC) or linalool (LNL) were investigated. Inclusion complexes were prepared by the kneading method. Both complexes presented 1:1 host:guest stoichiometry and the highest affinity constants were observed at 20 °C for both molecules. The nanoparticles containing carvacrol and linalool had mean diameters of 175.2 and 245.8 nm, respectively and high encapsulation efficiencies (<90%) were achieved for both compounds. Biological assays with mites (Tetranychus urticae) showed that the nanoparticles possessed repellency, acaricidal, and oviposition activities against this organism. Nanoencapsulated carvacrol and linalool were significantly more effective in terms of acaricidal and oviposition activities, while the unencapsulated compounds showed better repellency activity. The nanoformulations prepared in this study are good candidates for the sustainable and effective use of botanical compounds in agriculture, contributing to the reduction of environmental contamination, as well as promoting the effective control of pests in agriculture.


Assuntos
Quitosana/análogos & derivados , Inseticidas/administração & dosagem , Ácaros/efeitos dos fármacos , Nanopartículas/química , beta-Ciclodextrinas/química , Monoterpenos Acíclicos , Animais , Cimenos , Inseticidas/farmacologia , Monoterpenos/administração & dosagem , Monoterpenos/farmacologia
12.
J Agric Food Chem ; 66(6): 1330-1340, 2018 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-29345934

RESUMO

Botanical repellents represent one of the main ways of reducing the use of synthetic pesticides and the contamination of soil and hydric resources. However, the poor stability and rapid degradation of these compounds in the environment hinder their effective application in the field. Zein nanoparticles can be used as eco-friendly carrier systems to protect these substances against premature degradation, provide desirable release characteristics, and reduce toxicity in the environment and to humans. In this study, we describe the preparation and characterization of zein nanoparticles loaded with the main constituents of the essential oil of citronella (geraniol and R-citronellal). The phytotoxicity, cytotoxicity, and insect activity of the nanoparticles toward target and nontarget organisms were also evaluated. The botanical formulations showed high encapsulation efficiency (>90%) in the nanoparticles, good physicochemical stability, and effective protection of the repellents against UV degradation. Cytotoxicity and phytotoxicity assays showed that encapsulation of the botanical repellents decreased their toxicity. Repellent activity tests showed that nanoparticles containing the botanical repellents were highly repellent against the Tetranychus urticae Koch mite. This nanotechnological formulation offers a new option for the effective use of botanical repellents in agriculture, reducing toxicity, protecting against premature degradation, and providing effective pest control.


Assuntos
Cymbopogon/química , Portadores de Fármacos/química , Repelentes de Insetos/farmacologia , Ácaros/efeitos dos fármacos , Nanopartículas/química , Óleos de Plantas/farmacologia , Zeína/química , Monoterpenos Acíclicos , Agricultura , Aldeídos/química , Aldeídos/farmacologia , Animais , Composição de Medicamentos , Repelentes de Insetos/química , Ácaros/fisiologia , Monoterpenos/química , Monoterpenos/farmacologia , Phaseolus/efeitos dos fármacos , Phaseolus/parasitologia , Óleos de Plantas/química , Terpenos/química , Terpenos/farmacologia
13.
Front Chem ; 5: 93, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29164107

RESUMO

Chitosan, a polyaminosaccharide obtained by alkaline deacetylation of chitin, possesses useful properties including biodegradability, biocompatibility, low toxicity, and good miscibility with other polymers. It is extensively used in many applications in biology, medicine, agriculture, environmental protection, and the food and pharmaceutical industries. The amino and hydroxyl groups present in the chitosan backbone provide positions for modifications that are influenced by factors such as the molecular weight, viscosity, and type of chitosan, as well as the reaction conditions. The modification of chitosan by chemical methods is of interest because the basic chitosan skeleton is not modified and the process results in new or improved properties of the material. Among the chitosan derivatives, cyclodextrin-grafted chitosan and poly(ethylene glycol)-grafted chitosan are excellent candidates for a range of biomedical, environmental decontamination, and industrial purposes. This work discusses modifications including chitosan with attached cyclodextrin and poly(ethylene glycol), and the main applications of these chitosan derivatives in the biomedical field.

14.
Sci Rep ; 7(1): 5929, 2017 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-28724950

RESUMO

In this study, we prepared, characterized, and performed toxicity analyses of poly(ε-caprolactone) nanocapsules loaded with neem oil. Three formulations were prepared by the emulsion/solvent evaporation method. The nanocapsules showed a mean size distribution around 400 nm, with polydispersity below 0.2 and were stable for 120 days. Cytotoxicity and genotoxicity results showed an increase in toxicity of the oleic acid + neem formulations according to the amount of oleic acid used. The minimum inhibitory concentrations demonstrated that all the formulations containing neem oil were active. The nanocapsules containing neem oil did not affect the soil microbiota during 300 days of exposure compared to the control. Phytotoxicity studies indicated that NC_20 (200 mg of neem oil) did not affect the net photosynthesis and stomatal conductance of maize plants, whereas use of NC_10 (100:100 of neem:oleic acid) and NC_15 (150:50 of neem:oleic acid) led to negative effects on these physiological parameters. Hence, the use of oleic acid as a complement in the nanocapsules was not a good strategy, since the nanocapsules that only contained neem oil showed lower toxicity. These results demonstrate that evaluation of the toxicity of nanopesticides is essential for the development of environmentally friendly formulations intended for applications in agriculture.


Assuntos
Azadirachta/química , Glicerídeos/toxicidade , Nanocápsulas/química , Terpenos/toxicidade , Testes de Toxicidade , Animais , Linhagem Celular , Aberrações Cromossômicas , Ensaio Cometa , Desnitrificação/efeitos dos fármacos , Humanos , Concentração de Íons de Hidrogênio , Concentração Inibidora 50 , Camundongos , Testes de Sensibilidade Microbiana , Mutagênicos/toxicidade , Nanocápsulas/ultraestrutura , Ciclo do Nitrogênio/efeitos dos fármacos , Cebolas/química , Tamanho da Partícula , Fotossíntese/efeitos dos fármacos , Estômatos de Plantas/efeitos dos fármacos , Estômatos de Plantas/fisiologia , Microbiologia do Solo , Eletricidade Estática , Zea mays/efeitos dos fármacos , Zea mays/fisiologia
15.
Ecotoxicol Environ Saf ; 142: 369-374, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28437729

RESUMO

Although the potential toxicity of many metallic and carbon nanoparticles to plants has been reported, few studies have evaluated the phytotoxic effects of polymeric and solid lipid nanoparticles. The present work described the preparation and characterization of chitosan/tripolyphosphate (CS/TPP) nanoparticles and solid lipid nanoparticles (SLN) and evaluated the effects of different concentrations of these nanoparticles on germination of Zea mays, Brassica rapa, and Pisum sativum. CS/TPP nanoparticles presented an average size of 233.6±12.1nm, polydispersity index (PDI) of 0.30±0.02, and zeta potential of +21.4±1.7mV. SLN showed an average size of 323.25±41.4nm, PDI of 0.23±0.103, and zeta potential of -13.25±3.2mV. Nanotracking analysis enabled determination of concentrations of 1.33×1010 (CS/TPP) and 3.64×1012 (SLN) nanoparticles per mL. At high concentrations, CS/TPP nanoparticles caused complete inhibition of germination, and thus negatively affected the initial growth of all tested species. Differently, SLN presented no phytotoxic effects. The different size and composition and the opposite charges of SLN and CS/TPP nanoparticles could be associated with the differential phytotoxicity of these nanomaterials. The present study reports the phytotoxic potential of polymeric CS/TPP nanoparticles towards plants, indicating that further investigation is needed on the effects of such formulations intended for future use in agricultural systems, in order to avoid damage to the environment.


Assuntos
Quitosana/toxicidade , Germinação/efeitos dos fármacos , Nanopartículas/toxicidade , Polifosfatos/toxicidade , Poluentes do Solo/toxicidade , Triglicerídeos/toxicidade , Brassica rapa/efeitos dos fármacos , Brassica rapa/crescimento & desenvolvimento , Química Farmacêutica , Quitosana/química , Nanopartículas/química , Tamanho da Partícula , Pisum sativum/efeitos dos fármacos , Pisum sativum/crescimento & desenvolvimento , Polímeros/química , Polímeros/toxicidade , Polifosfatos/química , Poluentes do Solo/química , Triglicerídeos/química , Zea mays/efeitos dos fármacos , Zea mays/crescimento & desenvolvimento
16.
Ecotoxicol Environ Saf ; 139: 245-253, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28160702

RESUMO

The extensive use of pesticides is causing environmental pollution, affecting animal organisms in different habitats and also leading human health at risk. In this study, we present as an alternative the use of nanoparticles loaded with pesticides and report their toxicological assessment to a soil organism, Caenorhabditis elegans. Three nanoparticle formulations were analyzed: solid lipid nanoparticles loaded or not with atrazine and simazine, SLN; polymeric nanoparticles, NC_PCL loaded with atrazine; and chitosan/tripolyphosphate, CS/TPP, loaded or not with paraquat. All formulations, loaded or not with pesticides, increased lethality in a dose- dependent manner with similar LC50. Both loaded and unloaded NC_PCL were the most toxic formulations to developmental rate, significantly reducing worms length, even at low concentrations. In contrast, both CS/TPP nanoparticles were the least toxic, not affecting reproduction and body length at higher concentrations, probably due to the biocompatibility of chitosan. The physico-chemical characterization of nanoparticles after incubation in saline solution (used in exposure of organisms) has shown that these colloidal systems are stable and remain with the same initial characteristics, even in the presence of saline environment. Notably, our results indicate that the observed effects were caused by the nanoparticles per se. These results suggest that the development of nanoparticles aiming agriculture applications needs more studies in order to optimize the composition and then reduce their toxicity to non-target organisms.


Assuntos
Caenorhabditis elegans/efeitos dos fármacos , Herbicidas/toxicidade , Nanopartículas/toxicidade , Animais , Atrazina/toxicidade , Quitosana/toxicidade , Lipídeos/toxicidade , Paraquat/toxicidade , Polímeros/toxicidade , Polifosfatos/toxicidade , Simazina/toxicidade
17.
Front Plant Sci ; 7: 1494, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27790224

RESUMO

A major challenge of agriculture is to increase food production to meet the needs of the growing world population, without damaging the environment. In current agricultural practices, the control of pests is often accomplished by means of the excessive use of agrochemicals, which can result in environmental pollution and the development of resistant pests. In this context, biopesticides can offer a better alternative to synthetic pesticides, enabling safer control of pest populations. However, limitations of biopesticides, including short shelf life, photosensitivity, and volatilization, make it difficult to use them on a large scale. Here, we review the potential use of neem oil in crop protection, considering the gaps and obstacles associated with the development of sustainable agriculture in the not too distant future.

18.
Colloids Surf B Biointerfaces ; 147: 442-449, 2016 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-27573038

RESUMO

A phenyleneethynylene polymer (here denoted pPy3E-sqS) was synthesized and characterized by UV-vis spectroscopy, fluorescence spectroscopy, and TEM, and was used for the staining of polymeric nanocapsules. The nanocapsules presented good temporal stability, without changes in shape or fluorescence, and were suitable for use in drug release systems. The mean particle size was around 430nm, the polydispersity index was below 0.2, and the zeta potential was around -13mV. The release kinetics is one of the most important factors to consider in drug delivery systems, and here it was observed that nanocapsules containing the fluorescent polymer still maintained the ability to modulate the release of the fungicides tebuconazole and carbendazim (used as model drugs) after 4days. Preliminary results indicated that staining with the fluorescent pPy3E-sqS polymer could be used as a valuable tool to track the behavior of polymeric systems in the environment. However, further studies will be needed to clarify the environmental behavior and possible toxicity.


Assuntos
Alcinos/química , Benzimidazóis/administração & dosagem , Carbamatos/administração & dosagem , Liberação Controlada de Fármacos , Éteres/química , Fungicidas Industriais/administração & dosagem , Nanocápsulas/química , Polímeros/química , Triazóis/administração & dosagem , Benzimidazóis/química , Carbamatos/química , Estabilidade de Medicamentos , Fungicidas Industriais/química , Modelos Teóricos , Tamanho da Partícula , Triazóis/química
19.
J Environ Manage ; 151: 353-60, 2015 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-25585148

RESUMO

Enormous amounts of pesticides are manufactured and used worldwide, some of which reach soils and aquatic systems. Glyphosate is a non-selective herbicide that is effective against all types of weeds and has been used for many years. It can therefore be found as a contaminant in water, and procedures are required for its removal. This work investigates the use of biopolymeric membranes prepared with chitosan (CS), alginate (AG), and a chitosan/alginate combination (CS/AG) for the adsorption of glyphosate present in water samples. The adsorption of glyphosate by the different membranes was investigated using the pseudo-first order and pseudo-second order kinetic models, as well as the Langmuir and Freundlich isotherm models. The membranes were characterized regarding membrane solubility, swelling, mechanical, chemical and morphological properties. The results of kinetics experiments showed that adsorption equilibrium was reached within 4 h and that the CS membrane presented the best adsorption (10.88 mg of glyphosate/g of membrane), followed by the CS/AG bilayer (8.70 mg of glyphosate/g of membrane). The AG membrane did not show any adsorption capacity for this herbicide. The pseudo-second order model provided good fits to the glyphosate adsorption data on CS and CS/AG membranes, with high correlation coefficient values. Glyphosate adsorption by the membranes could be fitted by the Freundlich isotherm model. There was a high affinity between glyphosate and the CS membrane and moderate affinity in the case of the CS/AG membrane. Physico-chemical characterization of the membranes showed low values of solubility in water, indicating that the membranes are stable and not soluble in water. The SEM and AFM analysis showed evidence of the presence of glyphosate on CS membranes and on chitosan face on CS/AG membranes. The results showed that the glyphosate herbicide can be adsorbed by chitosan membranes and the proposed membrane-based methodology was successfully used to treat a water sample contaminated with glyphosate. Biopolymer membranes therefore potentially offer a versatile method to eliminate agricultural chemicals from water supplies.


Assuntos
Glicina/análogos & derivados , Herbicidas/química , Poluentes Químicos da Água/química , Purificação da Água/métodos , Água/química , Adsorção , Alginatos , Biopolímeros , Quitosana/química , Ácido Glucurônico , Glicina/química , Ácidos Hexurônicos , Cinética , Glifosato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...