Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Diabetes Res ; 2018: 5697970, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30003110

RESUMO

The kidney is an insulin-sensitive organ involved in glucose homeostasis. One major effect of insulin is to induce glycogen storage in the liver and muscle. However, no significant glycogen stores are detected in normal kidneys, but diabetic subjects present a characteristic renal histopathological feature resulting from extensive glycogen deposition mostly in nonproximal tubules. The mechanism of renal glycogen accumulation is yet poorly understood. Here, we studied in situ glycogen accumulation in the kidney from diabetic IRS2-knockout mice and the effect of the insulin-mimetic agent sodium tungstate (NaW). IRS2-knockout mice displayed hyperglycemia and hyperinsulinemia. NaW only normalized glycemia. There was no evident morphological difference between kidneys from untreated wild-type (WT), NaW-treated WT, and untreated IRS2-knockout mice. However, NaW-treated IRS2-knockout mice showed tubular alterations resembling clear cells in the cortex, but not in the outer medulla, that were correlated with glycogen accumulation. Immunohistochemical detection of the gluconeogenic enzyme phosphoenolpyruvate carboxykinase, mostly expressed by renal proximal tubules, showed that altered tubules were of proximal origin. Our preliminary study suggests that IRS2 differentially regulates glycogen accumulation in renal tubules and that NaW treatment in the context of IRS2 ablation induces abnormal glycogen accumulation in cortical proximal tubules.


Assuntos
Diabetes Mellitus Experimental/patologia , Glicogênio/metabolismo , Hipoglicemiantes/farmacologia , Túbulos Renais Proximais/metabolismo , Compostos de Tungstênio/farmacologia , Animais , Diabetes Mellitus Experimental/metabolismo , Nefropatias Diabéticas/metabolismo , Insulina/metabolismo , Proteínas Substratos do Receptor de Insulina/genética , Resistência à Insulina , Rim/metabolismo , Túbulos Renais Proximais/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosfoenolpiruvato Carboxiquinase (ATP)/metabolismo , Transdução de Sinais/efeitos dos fármacos
2.
Can J Physiol Pharmacol ; 92(8): 613-20, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24977713

RESUMO

Insulin receptor substrate 2 (IRS2) is a widely expressed protein that regulates crucial biological processes including glucose metabolism, protein synthesis, and cell survival. IRS2 is part of the insulin - insulin-like growth factor (IGF) signaling pathway and mediates the activation of the phosphotidylinositol 3-kinase (PI3K)-Akt and the Ras-mitogen-activated protein kinase (MAPK) cascades in insulin target tissues and in the pancreas. The best evidence of this is that systemic elimination of the Irs2 in mice (Irs2(-/-)) recapitulates the pathogenesis of type 2 diabetes (T2D), in that diabetes arises as a consequence of combined insulin resistance and beta-cell failure. Indeed, work using this knockout mouse has confirmed the importance of IRS2 in the control of glucose homeostasis and especially in the survival and function of pancreatic beta-cells. These studies have shown that IRS2 is critically required for beta-cell compensation in conditions of increased insulin demand. Importantly, islets isolated from T2D patients exhibit reduced IRS2 expression, which supports the likely contribution of altered IRS2-dependent signaling to beta-cell failure in human T2D. For all these reasons, the Irs2(-/-) mouse has been and will be essential for elucidating the inter-relationship between beta-cell function and insulin resistance, as well as to delineate therapeutic strategies to protect beta-cells during T2D progression.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Proteínas Substratos do Receptor de Insulina/genética , Proteínas Substratos do Receptor de Insulina/metabolismo , Pâncreas/metabolismo , Animais , Diabetes Mellitus Tipo 2/patologia , Diabetes Mellitus Tipo 2/prevenção & controle , Modelos Animais de Doenças , Humanos , Resistência à Insulina , Camundongos , Camundongos Knockout , Especificidade de Órgãos/genética , Transdução de Sinais
3.
Am J Physiol Endocrinol Metab ; 306(1): E36-47, 2014 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-24253047

RESUMO

Pancreatic ß-cells play a central role in type 2 diabetes (T2D) development, which is characterized by the progressive decline of the functional ß-cell mass that is associated mainly with increased ß-cell apoptosis. Thus, understanding how to enhance survival of ß-cells is key for the management of T2D. The insulin receptor substrate-2 (IRS-2) protein is pivotal in mediating the insulin/IGF signaling pathway in ß-cells. In fact, IRS-2 is critically required for ß-cell compensation in conditions of increased insulin demand and for ß-cell survival. Tungstate is a powerful antidiabetic agent that has been shown to promote ß-cell recovery in toxin-induced diabetic rodent models. In this study, we investigated whether tungstate could prevent the onset of diabetes in a scenario of dysregulated insulin/IGF signaling and massive ß-cell death. To this end, we treated mice deficient in IRS2 (Irs2(-/-)), which exhibit severe ß-cell loss, with tungstate for 3 wk. Tungstate normalized glucose tolerance in Irs2(-/-) mice in correlation with increased ß-cell mass, increased ß-cell replication, and a striking threefold reduction in ß-cell apoptosis. Islets from treated Irs2(-/-) exhibited increased phosphorylated Erk1/2. Interestingly, tungstate repressed apoptosis-related genes in Irs2(-/-) islets in vitro, and ERK1/2 blockade abolished some of these effects. Gene expression profiling showed evidence of a broad impact of tungstate on cell death pathways in islets from Irs2(-/-) mice, consistent with reduced apoptotic rates. Our results support the finding that ß-cell death can be arrested in the absence of IRS2 and that therapies aimed at reversing ß-cell mass decline are potential strategies to prevent the progression to T2D.


Assuntos
Hipoglicemiantes/administração & dosagem , Proteínas Substratos do Receptor de Insulina/deficiência , Proteínas Substratos do Receptor de Insulina/fisiologia , Células Secretoras de Insulina/efeitos dos fármacos , Compostos de Tungstênio/administração & dosagem , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Sobrevivência Celular/efeitos dos fármacos , Diabetes Mellitus Tipo 2/prevenção & controle , Regulação para Baixo/efeitos dos fármacos , Intolerância à Glucose/tratamento farmacológico , Células Secretoras de Insulina/fisiologia , Fígado/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosforilação/efeitos dos fármacos , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...