Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
J Phys Chem B ; 125(35): 9960-9969, 2021 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-34463098

RESUMO

The stratum corneum represents the first skin barrier against chemical and physical damage. These unique properties are based on its peculiar lipid composition with ceramides (CERs) as the main protagonists. In this study, the structural and chemical properties of the α-OH phytosphingosine [AP] CER class have been investigated. α-OH CERs are present in the stratum corneum in their d-forms; however, in most model systems the diastereomer mixture with the synthetically produced l-form is used. The d-form is well-known to form a hydrogen bonding network that helps to reduce the permeability of the lipid matrix, while the l-form does not show any hydrogen bonding network formation. In this paper, 2D (monolayers) and 3D (aqueous dispersions) models have been used to thoroughly study the physical-chemical behaviors of CER[AP] diastereomers taking into account how the symmetry of the chain pattern influences the behavior of the molecules. The chains of both diastereomers arrange in an oblique unit cell, but only the d-CER[AP] forms a supramolecular lattice (subgel phase) in both model systems. Interestingly, the chain pattern does not play any role in structure formation since the hydrogen bonding network dictates the packing properties. The 1:1 mixture of the diastereomers phase separates into two domains: one is composed of practically pure d-form and the other one is composed of a mixture of the l-form with a certain amount of d-form molecules.


Assuntos
Ceramidas , Pele , Epiderme , Esfingosina/análogos & derivados
2.
Beilstein J Nanotechnol ; 7: 236-45, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26977381

RESUMO

Ceramide-1-phosphate (C1P) plays an important role in several biological processes, being identified as a key regulator of many protein functions. For instance, it acts as a mediator of inflammatory responses. The mediation of the inflammation process happens due to the interaction of C1P with the C2 domain of cPLA2α, an effector protein that needs the presence of submicromolar concentrations of calcium ions. The aim of this study was to determine the phase behaviour and structural properties of C1P in the presence and absence of millimolar quantities of calcium in a well-defined pH environment. For that purpose, we used monomolecular films of C1P at the soft air/liquid interface with calcium ions in the subphase. The pH was varied to change the protonation degree of the C1P head group. We used surface pressure versus molecular area isotherms coupled with other monolayer techniques as Brewster angle microscopy (BAM), infrared reflection-absorption spectroscopy (IRRAS) and grazing incidence X-ray diffraction (GIXD). The isotherms indicate that C1P monolayers are in a condensed state in the presence of calcium ions, regardless of the pH. At higher pH without calcium ions, the monolayer is in a liquid-expanded state due to repulsion between the negatively charged phosphate groups of the C1P molecules. When divalent calcium ions are added, they are able to bridge the highly charged phosphate groups, enhancing the regular arrangement of the head groups. Similar solidification of the monolayer structure can be seen in the presence of a 150 times larger concentration of monovalent sodium ions. Therefore, calcium ions have clearly a strong affinity for the phosphomonoester of C1P.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...