Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(13)2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38998386

RESUMO

A drawback of recycled mixtures containing reclaimed asphalt is their increased stiffness, further worsened by the accelerated aging of binders in extreme weather conditions. Previous studies have shown that while rejuvenating agents can mitigate some of these issues by improving flexibility and reducing brittleness, they often present challenges, such as performance variability and the potential for rutting. This study aims to develop an optimal blend of reclaimed bitumen, a rejuvenating agent, and pure bitumen to achieve rheological properties similar to a control 35/50 pen-grade bitumen for road paving. Hence, the rejuvenated binders comprised 30:70 blends of reclaimed asphalt bitumen and 50/70 pen-grade bitumen, adding 0.2% to 0.6% of a rejuvenating agent by mass of the reclaimed asphalt. Sample testing included conventional penetration grade, softening point, and viscosity tests, followed by dynamic shear rheometer tests under unaged, short-term, and long-term aging conditions. The results show that the binder blend with 0.4% rejuvenator closely resembles the rheological properties of 35/50 pen-grade bitumen. This blend exhibits a 20% to 55% stiffness reduction for recycled mixtures with 30% reclaimed asphalt. Notably, the rejuvenated binders exhibited a similar level of aging resistance to the control bitumen, with a marginal difference of less than 5% in aging ratios. Meanwhile, large strain amplitude tests showed the importance of defining maximum rejuvenating incorporation rates in recycled mixtures to avoid rutting problems, where binders with 0.4% rejuvenator doubled the rutting potential (Jnr values). This innovative study highlights the potential for enhancing recycled mixtures' performance by evaluating rejuvenated reclaimed binders' rheology subjected to different aging conditions, thus contributing to sustainability in pavement construction.

2.
Materials (Basel) ; 16(10)2023 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-37241337

RESUMO

Self-healing in asphalt mixtures is a property that can be enhanced by external heating, which causes a thermal expansion that increases the flow of bitumen with reduced viscosity through the cracks. Therefore, this study aims to evaluate the effects of microwave heating on the self-healing performance of three asphalt mixtures: (1) conventional, (2) with steel wool fibers (SWF), and (3) with steel slag aggregates (SSA) and SWF. After evaluating the microwave heating capacity of the three asphalt mixtures with a thermographic camera, their self-healing performance was determined with fracture or fatigue tests and microwave heating recovery cycles. The results demonstrated that the mixtures with SSA and SWF promoted higher heating temperatures and presented the best self-healing capacity during the semicircular bending test and heating cycles, with significant strength recovery after a total fracture. In contrast, the mixtures without SSA presented inferior fracture results. Both the conventional mixture and that containing SSA and SWF presented high healing indexes after the four-point bending fatigue test and heating cycles, with a fatigue life recovery of around 150% after applying two healing cycles. Therefore, the conclusion is that SSA greatly influences the self-healing performance of asphalt mixtures after microwave radiation heating.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...