Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 194: 393-8, 2011 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-21890267

RESUMO

A magnetic fraction (15%) from a waste of foundry sand (WFS), composed of sand, carbon, bentonite clay and iron (10%) was modified by thermal treatment at 400, 600 and 800°C under inert atmosphere. Mössbauer analyses showed that the thermal treatment increased the amount of Fe(3)O(4) from 25 to 55% by reduction of Fe(2)O(3) and highly dispersed Fe(3+) by the carbon present in the waste. The Fe(3)O(4) caused a significant increase on the activity of two important reactions with application in environmental remediation: the Fenton oxidation of indigo carmine dye with H(2)O(2) and the reduction of Cr(VI) to Cr(III). The magnetic fraction of WFS was also mixed with hematite (Fe(2)O(3)) and thermally treated at 400, 600 and 800°C. This treatment produced large amounts of surface Fe(3)O(4) and increased substantially the rate of Fenton reaction as well as Cr(VI) reduction. This reactivity combined with the presence of carbon (an adsorbent for organic contaminants), bentonite clay (an adsorbent for metallic contaminants) and the granulometry/packing/hydrodynamic features make WFS a promising material for use in reactive permeable barriers.


Assuntos
Cromo/química , Ferro/química , Temperatura Alta , Magnetismo , Microscopia Eletrônica de Varredura , Oxirredução
2.
Chemosphere ; 78(9): 1116-20, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20060564

RESUMO

In this work, controlled reduction of red mud with H(2) was used to produce active systems for two different environmental applications, i.e. the heterogeneous Fenton reaction and the reduction of Cr(VI). Mössbauer, powder X-ray diffraction, thermal analyses and scanning electron microscopy analyses showed that at different temperatures, i.e. 300, 400, 500 and 600 degrees C, H(2) reduces red mud to different phases, mainly Fe(3)O(4), Fe(0)/Fe(3)O(4) and Fe(0). These Fe phases are dispersed on Al, Si and Ti oxides present in the red mud and show high reactivity towards two environmental applications, i.e. the heterogeneous Fenton reaction and the reduction of Cr(VI). Reduction with H(2) at 400 degrees C showed the best results for the oxidation of the model dye methylene blue with H(2)O(2) at neutral pH due to the presence of the composite Fe(0)/Fe(3)O(4). The reduced red mud at 500-600 degrees C produced Fe(0) highly active for the reduction of Cr(VI) in aqueous medium. Another feature of these red mud based system is that after deactivation due to extensive use they can be completely regenerated by simple treatment with H(2).


Assuntos
Cromo/química , Peróxido de Hidrogênio/química , Ferro/química , Corantes/química , Recuperação e Remediação Ambiental , Compostos Férricos/química , Temperatura Alta , Hidrogênio/química , Azul de Metileno/química , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...