Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pest Manag Sci ; 79(12): 5220-5229, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37592752

RESUMO

BACKGROUND: Chloris virgata is a troublesome weed in tropical regions. With the evolution of glyphosate resistance in key grass species, acetyl CoA carboxylase (ACCase) inhibitors have become a commonly used tool in soybean production areas in Brazil. We assessed if suspected resistant populations exhibited cross resistance to the different classes of ACCase inhibitors and investigated the resistance mechanisms in C. virgata. RESULTS: Dose-response experiments revealed resistance to haloxyfop-methyl and pinoxaden, with 432- and 3-fold resistance, respectively, compared to susceptible populations. Due to the lack of genetic resources for C. virgata, we sequenced, assembled, and annotated the genome using short-read Illumina technology. The k-mer analysis estimated a genome size of approximately 336 Mbp, with BUSCO completeness of 97%, and over 36 000 gene models were annotated. We examined if ACCase copy number variation and increased gene expression were involved in the resistance phenotype and found no difference when compared to a susceptible population. A mutation was detected in ACCase that encodes for amino acid position 2027, resulting in a tryptophan-to-cysteine (Trp2027Cys) substitution. We found the resistant population absorbed 11.4% less herbicide and retained 21% more herbicide on the treated leaf compared to the susceptible population. We developed a genotyping assay targeting the resistance-endowing Trp2027Cys substitution for quick resistance diagnosis. CONCLUSION: A Trp2027Cys amino acid substitution in ACCase confers resistance to haloxyfop and pinoxaden in C. virgata. We provide important insights into the evolutionary history of C. virgata and a draft genome as a useful resource to further our understanding of the biology in the genus Chloris. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Herbicidas , Herbicidas/farmacologia , Acetil-CoA Carboxilase/genética , Acetil-CoA Carboxilase/metabolismo , Variações do Número de Cópias de DNA , Resistência a Herbicidas/genética , Poaceae/genética , Mutação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
2.
J Chem Ecol ; 43(7): 725-738, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28711978

RESUMO

Senna obtusifolia L., a common weed in the tropical and subtropical regions of the world, is able to germinate under adverse environmental conditions, suggesting that this species has efficient stress-adaptation strategies. The aims of the present work were to examine the energy metabolism and the antioxidant defense system of the Senna obtusifolia L. during seed germination and initial growth, and the responses to allelochemical-induced stress. Respiratory activity, the activities of alcohol dehydrogenase (ADH), superoxide dismutase (SOD), catalase (CAT),guaicol peroxidase (POD), ascorbate peroxidase (APX), glutathione reductase (GR), lipoxygenase (LOX) and the content of malondialdehyde (MDA) and glutathione (GSSG and GSH) were measured. Shortly after seed imbibition, mitochondrial respiratory activity was active and the presence of SOD, CAT, GR and LOX activity in embryos, along with significant KCN-insensitive respiration, indicated that the production of reactive oxygen species (ROS) is initiated as soon as mitochondrial respiration resumes. Among the fourteen allelochemicals assayed, only coumarin significantly supressed the growth of S. obtusifolia seedlings. Although coumarin reduced the activities of CAT, POD and APX, the GSH, GSSG and MDA levels were not altered. Alpha-pinene, quercetin and ferulic acid did not modify the activity of the antioxidant enzymes or the contents of GSH, GSSH and MDA. Thus the antioxidant defense system of S. obstusifolia may be effective in counteracting the harmful effects of ROS generated during seed germination and initial growth in the presence of toxic allelochemicals.


Assuntos
Germinação , Estresse Oxidativo , Feromônios/metabolismo , Plantas Daninhas/crescimento & desenvolvimento , Senna/crescimento & desenvolvimento , Aclimatação , Ascorbato Peroxidases/metabolismo , Catalase/metabolismo , Glutationa/metabolismo , Lipoxigenase/metabolismo , Malondialdeído/metabolismo , Plantas Daninhas/enzimologia , Plantas Daninhas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Sementes/fisiologia , Senna/enzimologia , Senna/metabolismo , Superóxido Dismutase/metabolismo
3.
J Environ Sci Health B ; 40(1): 201-6, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15656182

RESUMO

Tomato is considered one of the most sensitive crops regarding 2,4-D drift. In many cases, such susceptibility has led to important restrictions in the use of 2,4-D based products. Field experiments were carried out for two consecutive years in tomato, by applying sublethal doses of 2,4-D (ranging from 0.42 to 13.44 g a.i. ha(-1)) directly to plants, at different stages of growth, as a simulation of eventual drifts to the crop. The range of rates was based on the assumption of a 0.0625-2.0% drift level of a 1 L ha(-1) of the most common formulated herbicides. For this crop, the range of rates between 0.42 and 13.44 g a.i ha(-1) applied at the beginning of flowering caused a linear crop reduction. On the other hand, rates < or = 13.44 g a.i. ha(-1) applied after full development of fourth truss stage or latter had no effect on crop yield or development. For tomato, tolerance to 2,4-D strongly increases with plant age.


Assuntos
Ácido 2,4-Diclorofenoxiacético/toxicidade , Herbicidas/toxicidade , Solanum lycopersicum/crescimento & desenvolvimento , Agricultura , Biomassa , Resistência a Medicamentos , Controle de Pragas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...