Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
An Acad Bras Cienc ; 95(suppl 2): e20220784, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38126519

RESUMO

The rising fructose intake in sugar-sweetened beverages and ultra-processed foods relates to the high incidence of nonalcoholic fatty liver disease. This study aimed to examine the effects of long-term high-fructose diet intake (for 16 or 20 weeks) on progressive hepatic damage, focusing on the endoplasmic reticulum stress markers and fibrogenesis as possible triggers of liver fibrosis. Forty 3-month-old male C57BL/6J mice were randomly divided into four nutritional groups: C16 (control diet for 16 weeks), C20 (control diet for 20 weeks), HFRU16 (high-fructose diet for 16 weeks), and HFRU20 (high-fructose diet for 20 weeks). Both HFRU groups showed oral glucose intolerance and insulin resistance, but only the HFRU20 group exhibited increased inflammation. The increased lipogenic and endoplasmic reticulum stress markers triggered hepatic fibrogenesis. Hence, time-dependent perivascular fibrosis with positive immunostaining for alpha-smooth muscle actin and reelin in HFRU mice was observed, ensuring fibrosis development in this mouse model. Our study showed time-dependent and progressive damage on hepatic cytoarchitecture, with maximization of hepatic steatosis without overweight in HFRU20 mice. ER stress and liver inflammation could mediate hepatic stellate cell activation and fibrogenesis, emerging as targets to prevent NAFLD progression and fibrosis onset in this dietary model.


Assuntos
Frutose , Hepatopatia Gordurosa não Alcoólica , Masculino , Camundongos , Animais , Frutose/efeitos adversos , Camundongos Endogâmicos C57BL , Fígado , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/patologia , Fibrose , Inflamação/complicações , Estresse do Retículo Endoplasmático
2.
Eur J Nutr ; 60(6): 2949-2960, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33742254

RESUMO

Obesity challenges lipid and carbohydrate metabolism. The resulting glucolipotoxicity  causes endoplasmic reticulum (ER) dysfunction, provoking the accumulation of immature proteins, which triggers the unfolded protein reaction (UPR) as an attempt to reestablish ER homeostasis. When the three branches of UPR fail to correct the unfolded/misfolded proteins, ER stress happens. Excessive dietary saturated fatty acids or fructose exhibit the same impact on the ER stress, induced by excessive ectopic fat accumulation or rising blood glucose levels, and meta-inflammation. These metabolic abnormalities can alleviate through dietary interventions. Many pathways are disrupted in adipose tissue, liver, and pancreas during ER stress, compromising browning and thermogenesis, favoring hepatic lipogenesis, and impairing glucose-stimulated insulin secretion within pancreatic beta cells. As a result, ER stress takes part in obesity, hepatic steatosis, and diabetes pathogenesis, arising as a potential target to treat or even prevent metabolic diseases. The scientific community seeks strategies to alleviate ER stress by avoiding inflammation, apoptosis, lipogenesis suppression, and insulin sensitivity augmentation through pharmacological and non-pharmacological interventions. This comprehensive review aimed to describe the contribution of excessive dietary fat or sugar to ER stress and the impact of this adverse cellular environment on adipose tissue, liver, and pancreas function.


Assuntos
Estresse do Retículo Endoplasmático , Resistência à Insulina , Tecido Adiposo , Humanos , Fígado , Obesidade , Pâncreas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...