Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Vet Hung ; 2022 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-35499930

RESUMO

Follicle-stimulating hormone (FSH) contributes to the acquisition of oocyte competence by modulating signalling pathways in cumulus cells (CCs), albeit much less is known about transcription factors (TFs) that orchestrate the downstream transcriptional changes. This work allowed to prospect TFs involved in FSH-mediated signalling during oocyte in vitro maturation (IVM). Bovine cumulus-oocyte complexes underwent IVM with FSH (FSH+) or without FSH (control/CTL) for 22 h, and CCs were subjected to gene expression profiling. Five software identified reference genes for RT-qPCR (ATP1A1, UBB, and YWHAZ). The transcript levels of FSH-responsive genes HAS2 and PTGS2 (COX2) validated the experimental design. Among candidate TFs, MYC was down-regulated (0.35-fold; P < 0.0001), and THAP11 (RONIN) was up-regulated (1.47-fold; P = 0.016) under FSH+ conditions. In silico analyses predicted binding motifs at MYC and THAP11 genes for previously known FSH-responsive TFs. Signalling pathways (EGFR, ERK, GSK3, PKA, and P38) may execute post-translational regulation due to potential phosphorylation sites in MYC and THAP11 proteins. Prediction of protein-protein interaction networks showed MYC as a core component of FSH signalling, albeit THAP11 acts independently. Hence, MYC integrates FSH signalling networks and may assist in exploring genome-wide transcriptional changes associated with the acquisition of oocyte competence.

2.
Curr Protein Pept Sci ; 20(4): 368-395, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30387391

RESUMO

The plasma membrane forms a permeable barrier that separates the cytoplasm from the external environment, defining the physical and chemical limits in each cell in all organisms. The movement of molecules and ions into and out of cells is controlled by the plasma membrane as a critical process for cell stability and survival, maintaining essential differences between the composition of the extracellular fluid and the cytosol. In this process aquaporins (AQPs) figure as important actors, comprising highly conserved membrane proteins that carry water, glycerol and other hydrophilic molecules through biomembranes, including the cell wall and membranes of cytoplasmic organelles. While mammals have 15 types of AQPs described so far (displaying 18 paralogs), a single plant species can present more than 120 isoforms, providing transport of different types of solutes. Such aquaporins may be present in the whole plant or can be associated with different tissues or situations, including biotic and especially abiotic stresses, such as drought, salinity or tolerance to soils rich in heavy metals, for instance. The present review addresses several aspects of plant aquaporins, from their structure, classification, and function, to in silico methodologies for their analysis and identification in transcriptomes and genomes. Aspects of evolution and diversification of AQPs (with a focus on plants) are approached for the first time with the aid of the LCA (Last Common Ancestor) analysis. Finally, the main practical applications involving the use of AQPs are discussed, including patents and future perspectives involving this important protein family.


Assuntos
Aquaporinas , Proteínas de Plantas , Plantas/química , Aquaporinas/genética , Aquaporinas/metabolismo , Biotecnologia , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...