Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Antimicrob Agents Chemother ; 68(4): e0158623, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38411952

RESUMO

Increasing evidence supports the repositioning of beta-lactams for tuberculosis (TB) therapy, but further research on their interaction with conventional anti-TB agents is still warranted. Moreover, the complex cell envelope of Mycobacterium tuberculosis (Mtb) may pose an additional obstacle to beta-lactam diffusion. In this context, we aimed to identify synergies between beta-lactams and anti-TB drugs ethambutol (EMB) and isoniazid (INH) by assessing antimicrobial effects, intracellular activity, and immune responses. Checkerboard assays with H37Rv and eight clinical isolates, including four drug-resistant strains, exposed that only treatments containing EMB and beta-lactams achieved synergistic effects. Meanwhile, the standard EMB and INH association failed to produce any synergy. In Mtb-infected THP-1 macrophages, combinations of EMB with increasing meropenem (MEM) concentrations consistently displayed superior killing activities over the individual antibiotics. Flow cytometry with BODIPY FL vancomycin, which binds directly to the peptidoglycan (PG), confirmed an increased exposure of this layer after co-treatment. This was reinforced by the high IL-1ß secretion levels found in infected macrophages after incubation with MEM concentrations above 5 mg/L, indicating an exposure of the host innate response sensors to pathogen-associated molecular patterns in the PG. Our findings show that the proposed impaired access of beta-lactams to periplasmic transpeptidases is counteracted by concomitant administration with EMB. The efficiency of this combination may be attributed to the synchronized inhibition of arabinogalactan and PG synthesis, two key cell wall components. Given that beta-lactams exhibit a time-dependent bactericidal activity, a more effective pathogen recognition and killing prompted by this association may be highly beneficial to optimize TB regimens containing carbapenems.IMPORTANCEAddressing drug-resistant tuberculosis with existing therapies is challenging and the treatment success rate is lower when compared to drug-susceptible infection. This study demonstrates that pairing beta-lactams with ethambutol (EMB) significantly improves their efficacy against Mycobacterium tuberculosis (Mtb). The presence of EMB enhances beta-lactam access through the cell wall, which may translate into a prolonged contact between the drug and its targets at a concentration that effectively kills the pathogen. Importantly, we showed that the effects of the EMB and meropenem (MEM)/clavulanate combination were maintained intracellularly. These results are of high significance considering that the time above the minimum inhibitory concentration is the main determinant of beta-lactam efficacy. Moreover, a correlation was established between incubation with higher MEM concentrations during macrophage infection and increased IL-1ß secretion. This finding unveils a previously overlooked aspect of carbapenem repurposing against tuberculosis, as certain Mtb strains suppress the secretion of this key pro-inflammatory cytokine to evade host surveillance.


Assuntos
Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Tuberculose , Humanos , Etambutol/farmacologia , Etambutol/uso terapêutico , Meropeném/farmacologia , Meropeném/uso terapêutico , Ácido Clavulânico/farmacologia , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose/microbiologia , Carbapenêmicos/farmacologia , beta-Lactamas/farmacologia , beta-Lactamas/uso terapêutico , Testes de Sensibilidade Microbiana
3.
Front Cell Infect Microbiol ; 13: 1089911, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37009497

RESUMO

The lack of effective therapeutics against emerging multi-drug resistant strains of Mycobacterium tuberculosis (Mtb) prompts the identification of novel anti-tuberculosis targets. The essential nature of the peptidoglycan (PG) layer of the mycobacterial cell wall, which features several distinctive modifications, such as the N-glycolylation of muramic acid and the amidation of D-iso-glutamate, makes it a target of particular interest. To understand their role in susceptibility to beta-lactams and in the modulation of host-pathogen interactions, the genes encoding the enzymes responsible for these PG modifications (namH and murT/gatD, respectively) were silenced in the model organism Mycobacterium smegmatis using CRISPR interference (CRISPRi). Although beta-lactams are not included in TB-therapy, their combination with beta-lactamase inhibitors is a prospective strategy to treat MDR-TB. To uncover synergistic effects between the action of beta-lactams and the depletion of these PG modifications, knockdown mutants were also constructed in strains lacking the major beta-lactamase of M. smegmatis BlaS, PM965 (M. smegmatis ΔblaS1) and PM979 (M. smegmatis ΔblaS1 ΔnamH). The phenotyping assays affirmed the essentiality of the amidation of D-iso-glutamate to the survival of mycobacteria, as opposed to the N-glycolylation of muramic acid. The qRT-PCR assays confirmed the successful repression of the target genes, along with few polar effects and differential knockdown level depending on PAM strength and target site. Both PG modifications were found to contribute to beta-lactam resistance. While the amidation of D-iso-glutamate impacted cefotaxime and isoniazid resistance, the N-glycolylation of muramic acid substantially promoted resistance to the tested beta-lactams. Their simultaneous depletion provoked synergistic reductions in beta-lactam MICs. Moreover, the depletion of these PG modifications promoted a significantly faster bacilli killing by J774 macrophages. Whole-genome sequencing revealed that these PG modifications are highly conserved in a set of 172 clinical strains of Mtb, demonstrating their potential as therapeutic targets against TB. Our results support the development of new therapeutic agents targeting these distinctive mycobacterial PG modifications.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Peptidoglicano/genética , Ácidos Murâmicos/farmacologia , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Tuberculose/microbiologia , Resistência beta-Lactâmica , Parede Celular , beta-Lactamas/farmacologia , Glutamatos/genética , Glutamatos/farmacologia , Antibacterianos/farmacologia
4.
Front Microbiol ; 13: 985871, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36147841

RESUMO

Beta-lactams have been excluded from tuberculosis therapy due to the intrinsic resistance of Mycobacterium tuberculosis (Mtb) to this antibiotic class, usually attributed to a potent beta-lactamase, BlaC, and to an unusually complex cell wall. In this pathogen, the peptidoglycan is cross-linked by penicillin-binding proteins (PBPs) and L,D-transpeptidases, the latter resistant to inhibition by most beta-lactams. However, recent studies have shown encouraging results of beta-lactam/beta-lactamase inhibitor combinations in clinical strains. Additional research on the mechanisms of action and resistance to these antibiotics and other inhibitors of peptidoglycan synthesis, such as the glycopeptides, is crucial to ascertain their place in alternative regimens against drug-resistant strains. Within this scope, we applied selective pressure to generate mutants resistant to amoxicillin, meropenem or vancomycin in Mtb H37Rv or Mycolicibacterium smegmatis (Msm) mc2-155. These were phenotypically characterized, and whole-genome sequencing was performed. Mutations in promising targets or orthologue genes were inspected in Mtb clinical strains to establish potential associations between altered susceptibility to beta-lactams and the presence of key genomic signatures. The obtained isolates had substantial increases in the minimum inhibitory concentration of the selection antibiotic, and beta-lactam cross-resistance was detected in Mtb. Mutations in L,D-transpeptidases and major PBPs, canonical targets, or BlaC were not found. The transcriptional regulator PhoP (Rv0757) emerged as a common denominator for Mtb resistance to both amoxicillin and meropenem, while Rv2864c, a lipoprotein with PBP activity, appears to be specifically involved in decreased susceptibility to the carbapenem. Nonetheless, the mutational pattern detected in meropenem-resistant mutants was different from the yielded by amoxicillin-or vancomycin-selected isolates, suggesting that distinct pathways may participate in increased resistance to peptidoglycan inhibitors, including at the level of beta-lactam subclasses. Cross-resistance between beta-lactams and antimycobacterials was mostly unnoticed, and Msm meropenem-resistant mutants from parental strains with previous resistance to isoniazid or ethambutol were isolated at a lower frequency. Although cell-associated nitrocefin hydrolysis was increased in some of the isolates, our findings suggest that traditional assumptions of Mtb resistance relying largely in beta-lactamase activity and impaired access of hydrophilic molecules through lipid-rich outer layers should be challenged. Moreover, the therapeutical potential of the identified Mtb targets should be explored.

5.
Microbiol Spectr ; 10(4): e0067422, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-35695524

RESUMO

The increasing threat of drug resistance and a stagnated pipeline of novel therapeutics endanger the eradication of tuberculosis. Beta-lactams constitute promising additions to the current therapeutic arsenal and two carbapenems are included in group C of medicines recommended by the WHO for use in longer multidrug-resistant tuberculosis regimens. However, the determinants underlining diverse Mycobacterium tuberculosis phenotypes to beta-lactams remain largely undefined. To decipher these, we present a proof-of-concept study based on a large-scale beta-lactam susceptibility screening for 172 M. tuberculosis clinical isolates from Portugal, including 72 antimycobacterial drug-resistant strains. MICs were determined for multiple beta-lactams and strains were subjected to whole-genome sequencing to identify core-genome single-nucleotide variant-based profiles. Global and cell wall-targeted approaches were then followed to detect putative drivers of beta-lactam response. We found that drug-resistant strains were more susceptible to beta-lactams, but significant differences were not observed between distinct drug-resistance profiles. Sublineage 4.3.4.2 strains were significantly more susceptible to beta-lactams, while the contrary was observed for Beijing and 4.1.2.1 sublineages. While mutations in beta-lactamase or cell wall biosynthesis genes were uncommon, a rise in beta-lactam MICs was detected in parallel with the accumulation of mutations in peptidoglycan cross-linking or cell division genes. Finally, we exposed that putative beta-lactam resistance markers occurred in genes for which relevant roles in cell wall processes have been ascribed, such as rpfC or pknA. Genetic studies to validate the relevance of the identified mutations for beta-lactam susceptibility and further improvement of the phenotype-genotype associations are needed in the future. IMPORTANCE Associations between differential M. tuberculosis beta-lactam phenotypes and preexisting antimycobacterial drug resistance, strain sublineage, or specific mutational patterns were established. Importantly, we reveal that highly drug-resistant isolates of sublineage 4.3.4.2 have an increased susceptibility to beta-lactams compared with other strains. Thus, directing beta-lactams to treat infections by specific M. tuberculosis strains and refraining its use from others emerges as a potentially important strategy to avoid resistance development. Individual mutations in blaC or genes encoding canonical beta-lactam targets, such as peptidoglycan transpeptidases, are infrequent and do not greatly impact the MICs of potent carbapenem plus clavulanic acid combinations. An improved understanding of the global effect of cumulative mutations in relevant gene sets for peptidoglycan and cell division processes on beta-lactam susceptibility is also provided.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Antibacterianos/farmacologia , Carbapenêmicos , Humanos , Testes de Sensibilidade Microbiana , Peptidoglicano , Tuberculose/microbiologia , beta-Lactamas/farmacologia
6.
Viruses ; 13(7)2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34372584

RESUMO

Double-stranded DNA bacteriophages end their lytic cycle by disrupting the host cell envelope, which allows the release of the virion progeny. Each phage must synthesize lysis proteins that target each cell barrier to phage release. In addition to holins, which permeabilize the cytoplasmic membrane, and endolysins, which disrupt the peptidoglycan (PG), mycobacteriophages synthesize a specific lysis protein, LysB, capable of detaching the outer membrane from the complex cell wall of mycobacteria. The family of LysB proteins is highly diverse, with many members presenting an extended N-terminus. The N-terminal region of mycobacteriophage Ms6 LysB shows structural similarity to the PG-binding domain (PGBD) of the φKZ endolysin. A fusion of this region with enhanced green fluorescent protein (Ms6LysBPGBD-EGFP) was shown to bind to Mycobacterium smegmatis, Mycobacterium vaccae, Mycobacterium bovis BGC and Mycobacterium tuberculosis H37Ra cells pretreated with SDS or Ms6 LysB. In pulldown assays, we demonstrate that Ms6 LysB and Ms6LysBPGBD-EGFP bind to purified peptidoglycan of M. smegmatis, Escherichia coli, Pseudomonas aeruginosa and Bacillus subtilis, demonstrating affinity to PG of the A1γ chemotype. An infection assay with an Ms6 mutant producing a truncated version of LysB lacking the first 90 amino acids resulted in an abrupt lysis. These results clearly demonstrate that the N-terminus of Ms6 LysB binds to the PG.


Assuntos
Bacteriólise/fisiologia , Micobacteriófagos/metabolismo , Proteínas Virais/genética , Membrana Celular/metabolismo , Parede Celular/metabolismo , Endopeptidases , Hidrólise , Mycobacterium/metabolismo , Mycobacterium/virologia , Peptidoglicano/metabolismo , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...