Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Sensors (Basel) ; 24(12)2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38931644

RESUMO

The transition to fully autonomous roadways will include a long period of mixed-autonomy traffic. Mixed-autonomy roadways pose a challenge for autonomous vehicles (AVs) which use conservative driving behaviours to safely negotiate complex scenarios. This can lead to congestion and collisions with human drivers who are accustomed to more confident driving styles. In this work, an explainable multi-variate time series classifier, Time Series Forest (TSF), is compared to two state-of-the-art models in a priority-taking classification task. Responses to left-turning hazards at signalized and stop-sign-controlled intersections were collected using a full-vehicle driving simulator. The dataset was comprised of a combination of AV sensor-collected and V2V (vehicle-to-vehicle) transmitted features. Each scenario forced participants to either take ("go") or yield ("no go") priority at the intersection. TSF performed comparably for both the signalized and sign-controlled datasets, although all classifiers performed better on the signalized dataset. The inclusion of V2V data led to a slight increase in accuracy for all models and a substantial increase in the true positive rate of the stop-sign-controlled models. Additionally, incorporating the V2V data resulted in fewer chosen features, thereby decreasing the model complexity while maintaining accuracy. Including the selected features in an AV planning model is hypothesized to reduce the need for conservative AV driving behaviour without increasing the risk of collision.

2.
Sensors (Basel) ; 23(12)2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37420725

RESUMO

The ActiGraph GT9X has been implemented in clinical trials to track physical activity and sleep. Given recent incidental findings from our laboratory, the overall aim of this study was to notify academic and clinical researchers of the idle sleep mode (ISM) and inertial measurement unit (IMU)'s interaction, as well as their subsequent effect on data acquisition. Investigations were undertaken using a hexapod robot to test the X, Y and Z sensing axes of the accelerometers. Seven GT9X were tested at frequencies ranging from 0.5 to 2 Hz. Testing was performed for three sets of setting parameters: Setting Parameter 1 (ISMONIMUON), Setting Parameter 2 (ISMOFFIMUON), Setting Parameter 3 (ISMONIMUOFF). The minimum, maximum and range of outputs were compared between the settings and frequencies. Findings indicated that Setting Parameters 1 and 2 were not significantly different, but both were significantly different from Setting Parameter 3. Upon inspection, it was discovered that the ISM was only active during Setting Parameter 3 testing, despite it being enabled in Setting Parameter 1. Researchers should be aware of this when conducting future research using the GT9X.


Assuntos
Acelerometria , Exercício Físico , Sono
3.
Mil Med ; 188(9-10): e3102-e3111, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37192219

RESUMO

INTRODUCTION: Body armor and torso-borne equipment are critical to the survivability and operational effectiveness of a soldier. Historically, in-service designs have been predominantly designed for males or unisex, which may be disadvantageous for females who are shaped differently and, on average, smaller in stature and mass than their male counterparts. This study assesses the biomechanical and performance impact of two Canadian in-service armors and fighting load conditions on females. MATERIALS AND METHODS: Four tasks (i.e., range of motion, treadmill march [×2], and a wall obstacle) were performed in a Baseline condition and two in-service torso-borne equipment conditions; the full torso coverage (FTC) condition has full upper torso soft armor with the fighting load carried in a separate vest, while the reduced coverage (RC) has a plate carrier with fighting load integrated into the armor carrier, bulk positioned higher, and less torso coverage. Both used identical combat loads and front and back armor plates. Trunk range of motion, march lower limb kinematics, march shoulder and hip skin pressures, perceived discomfort after the march, and time to traverse a wall obstacle were captured. Data were collected to assess the biomechanics and usability of the systems for eight females, representative of military recruits. Linear mixed-effects models were created, and analysis of variances (ANOVAs) were then performed on all the outcome measures (P < .05). Tukey's post-hoc procedures were performed when appropriate (P < .05). RESULTS: There were significant differences between the RC and FTC for the sit and reach test (P < .001), lateral bend test (P < .001), and wall traverse time (P < .01). In all cases, the RC outperformed FTC. There were no differences between the two in-service conditions with respect to hip, knee, and ankle flexion/extension. The RC average skin pressure was higher than the FTC at the left and right shoulders by 103% and 79%, respectively, and peak skin pressure at the left shoulder by 75%. Both in-service conditions showed decrements in performance from Baseline for sit and reach (P < .001), lateral bend (P < .001), and peak hip and knee flexion (P < .01) with the FTC showing decreases in trunk rotation (P < .001) and wall traverse time (P < .01). CONCLUSIONS: Improved outcomes for the RC can be attributed to design differences. The lower placement of bulk in FTC may act as a physical barrier during range of motion tasks and the wall obstacle. The presence of shoulder caps on FTC provides another physical barrier that likely impedes full movement through the arms and shoulders. While the narrower shoulder straps of the RC remove the barrier, it causes more concentrated skin pressures on the shoulder that can lead to injury. The results suggest that the RC offers a potential for increased operational effectiveness in females (and potentially for males) compared to the FTC system. Shoulder pressure, an important predictor of discomfort and injury, is the only measure for which FTC outperformed the RC. Future torso-borne equipment designs targeting this outcome measure could help increase the effectiveness of the RC and other similar systems that reduce torso coverage, though survivability implications must also be considered.


Assuntos
Quadril , Extremidade Inferior , Humanos , Masculino , Feminino , Canadá , Joelho , Tronco , Fenômenos Biomecânicos , Amplitude de Movimento Articular
4.
Med Eng Phys ; 115: 103976, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37120172

RESUMO

Morphology analysis is valuable to understanding risk factors and the etiology of carpal tunnel (CT) syndrome. The objective of this study was to investigate morphology changes along the length of the CT using shape signatures (SS). Analysis was performed on ten cadaveric specimens in neutral wrist posture. Centroid-to-boundary distance SS were generated for proximal, middle, and distal CT cross-sections. Phase shift and Euclidean distance were quantified relative to a template SS for each specimen. Medial, lateral, palmar, and dorsal peaks were identified on each SS to generate metrics of tunnel width, tunnel depth, peak amplitude, peak angle. Width and depth measures were also performed using previously reported methods to serve as a basis of comparison. The phase shift revealed twisting of 21° between the ends of the tunnel. Distance from the template and width varied significantly over the length of the tunnel, while depth did not. Measures of width and depth using the SS method were consistent with previously reported methods. The SS method afforded the advantage of peak analysis with overall trends of peak amplitude indicating flattening of the tunnel at the proximal and distal ends relative to a rounder shape in the middle.


Assuntos
Síndrome do Túnel Carpal , Punho , Humanos , Punho/diagnóstico por imagem , Síndrome do Túnel Carpal/diagnóstico por imagem , Articulação do Punho , Postura , Fatores de Risco
5.
Sensors (Basel) ; 23(2)2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36679747

RESUMO

Current methods for ergonomic assessment often use video-analysis to estimate wrist postures during occupational tasks. Wearable sensing and machine learning have the potential to automate this tedious task, and in doing so greatly extend the amount of data available to clinicians and researchers. A method of predicting wrist posture from inertial measurement units placed on the wrist and hand via a deep convolutional neural network has been developed. This study has quantified the accuracy and reliability of the postures predicted by this system relative to the gold standard of optoelectronic motion capture. Ten participants performed 3 different simulated occupational tasks on 2 occasions while wearing inertial measurement units on the hand and wrist. Data from the occupational task recordings were used to train a convolutional neural network classifier to estimate wrist posture in flexion/extension, and radial/ulnar deviation. The model was trained and tested in a leave-one-out cross validation format. Agreement between the proposed system and optoelectronic motion capture was 65% with κ = 0.41 in flexion/extension and 60% with κ = 0.48 in radial/ulnar deviation. The proposed system can predict wrist posture in flexion/extension and radial/ulnar deviation with accuracy and reliability congruent with published values for human estimators. This system can estimate wrist posture during occupational tasks in a small fraction of the time it takes a human to perform the same task. This offers opportunity to expand the capabilities of practitioners by eliminating the tedium of manual postural assessment.


Assuntos
Articulação do Punho , Punho , Humanos , Reprodutibilidade dos Testes , Amplitude de Movimento Articular , Postura
6.
Appl Ergon ; 106: 103878, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36001925

RESUMO

As driving performance relies heavily on the interpretation of visual information, driving simulators require a visual display that can effectively communicate the virtual environment to the driver. Most high-fidelity visual displays include an expensive system of high-definition projectors and wraparound screens. To reduce the overall cost of a driving simulator while preserving the generalizability of results to naturalistic driving, head mounted displays (HMD) are being considered as a substitute visual cueing system. Recent innovations to virtual reality technologies are encouraging, however, differences between HMDs and more traditional visual displays have not been explored for all types of driving measures. In particular, while existing literature provides insight into the validity of HMDs as a substitute for higher fidelity visual displays in tests of driver behaviour and performance, there is a gap in the literature regarding differences in physiological responses. In the current study, upper body muscle activation and joint angle ranges were compared between an Oculus™ Rift Development Kit 2 HMD and a system of wrap around screens. Twenty-one participants each completed two simulated drives, one per display, in a counterbalanced order. During the simulation, drivers encountered unanticipated pedestrian crossings during which peak surface electromyography, root-mean-square of the surface electromyography signal and joint angles were determined bilaterally on the upper limbs. No significant differences (p ≤ 0.05) were observed between the Oculus™ Rift HMD and the wrap around screens for all dependent variables with the exception of left joint range of motion in female participants, suggesting that the HMD reduced field of view had a minimal effect on driver kinematics and no effect on muscle activation levels. Upper body bracing was observed during the hazard response time segments characterized by significantly increased muscle activity during hazard response time segments and minimal joint movement. Considering the lack of significant kinematic and muscle activation differences between the two visual inputs, HMD technology for hazard response may provide a suitable alternative to wrap around screens for studying kinematic responses during hazardous driving scenarios.


Assuntos
Condução de Veículo , Músculos , Óculos Inteligentes , Feminino , Humanos , Masculino , Condução de Veículo/psicologia , Fenômenos Biomecânicos , Desenho de Equipamento , Músculos/fisiologia , Pedestres , Tempo de Reação/fisiologia
7.
PLoS One ; 17(11): e0277234, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36449537

RESUMO

Non-neutral wrist postures have been reported to cause decreased carpal tunnel volume (CTV) contributing to impingement of the median nerve and development of carpal tunnel syndrome. Recent analysis found CTV did not change with ±20° flexion-extension (FE), however, CTV decreased with ulnar deviation over the range of -5° to 15° radial-ulnar deviation (RUD). These findings suggest CTV may be too coarse of a measure to reflect the effects of slight non-neutral postures, or that volume is conserved and redistributed due to changes in tunnel morphology with posture. The objective of this study was to assess volume distribution along the length of the carpal tunnel and to quantify regional morphology changes with deviated wrist postures in both FE and RUD. Analysis was performed on a dataset of computed tomography scans collected on ten cadaveric specimens (5 male, 5 female, mean age = 80.7 ± 10.9 years) over a range of FE and RUD postures. The carpal tunnel of each scan was divided into four quartiles of equal length along the tunnel to quantify volume distribution. Volume within the carpal tunnel was seen to redistribute with both FE and RUD. Decreased volume in the distal aspect of the tunnel with flexion and proximal aspect of the tunnel with ulnar deviation may contribute to localized compression of the medial nerve. Measures of mean cross-sectional area, width and depth by quartile provided an indication of the morphology changes associated volume redistribution. Morphology analysis also revealed twisting between the proximal and distal aspects of the tunnel which increased with flexion and ulnar deviation and may further contribute to strain on the median nerve.


Assuntos
Síndrome do Túnel Carpal , Osso Escafoide , Feminino , Masculino , Humanos , Punho/diagnóstico por imagem , Síndrome do Túnel Carpal/diagnóstico por imagem , Extremidade Superior , Postura
8.
Appl Ergon ; 105: 103837, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35803166

RESUMO

Loads carried by military populations can affect those of smaller stature, such as the average female, due to the higher percentage of body weight the loads represent. Despite this, most load carriage research is performed on males. Peer reviewed articles were collected from four databases to summarize available research on biomechanical and physiological effects of load carriage on females in the military. Extraction and thematic analysis were performed on 18 articles. 39% looked at biomechanical differences between loads in females, 61% looked at how the same load affected males and females, 44% looked at sex-by-load interaction effects, and 72% discussed impacts of load on females. The research revealed that military load carriage affects the biomechanics and physiology differently in females and to a greater extent than in males. Several gaps in available literature were found. Very few studies used military participants, military equipment, and/or employed occupationally relevant data collection methodologies.

9.
Clin Biomech (Bristol, Avon) ; 92: 105575, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35051839

RESUMO

BACKGROUND: Non-neutral wrist postures are a commonly reported risk factor for carpal tunnel syndrome. It is unclear how slight flexion-extension and radial-ulnar deviation postures affect the carpal tunnel. The objective was to determine the effects of slight non-neutral postures by quantifying carpal tunnel volume. METHODS: Computed tomography images were collected on ten cadaveric specimens in target postures of -20°, -10°, -5°, 0°, 5°, 10°, and 20° of flexion and - 10°, -5°, 0°, 5°, and 10° of radial-ulnar deviation. Surface meshes of the carpal tunnel, carpal bones, radius, and third metacarpal were generated with manual segmentation. Carpal tunnel volume was calculated as the volume between proximal and distal boundaries defined with anatomical landmarks and the orientation of the tunnel. The precise wrist posture of each scan was determined with inertial-based coordinate systems of the radius and third metacarpal. FINDINGS: Through multiple linear regression it was determined that, over the observed range of postures, flexion-extension angle does not have a significant effect (p = 0.99) while radial-ulnar deviation angle has a significant effect of -5.9 mm3/degree (p = 0.003). The findings were consistent with previous studies of postural effects on carpal tunnel pressure. INTERPRETATION: For the treatment and prevention of carpal tunnel syndrome, results suggest that attention should be given to slight radial-ulnar deviation postures (<10°), while slight flexion-extension postures (<20°) are of lesser consequence to carpal tunnel volume.


Assuntos
Ossos do Carpo , Síndrome do Túnel Carpal , Ossos do Carpo/diagnóstico por imagem , Humanos , Postura , Rádio (Anatomia)/diagnóstico por imagem , Punho , Articulação do Punho/diagnóstico por imagem
10.
Sensors (Basel) ; 21(14)2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34300540

RESUMO

Wrist motion provides an important metric for disease monitoring and occupational risk assessment. The collection of wrist kinematics in occupational or other real-world environments could augment traditional observational or video-analysis based assessment. We have developed a low-cost 3D printed wearable device, capable of being produced on consumer grade desktop 3D printers. Here we present a preliminary validation of the device against a gold standard optical motion capture system. Data were collected from 10 participants performing a static angle matching task while seated at a desk. The wearable device output was significantly correlated with the optical motion capture system yielding a coefficient of determination (R2) of 0.991 and 0.972 for flexion/extension (FE) and radial/ulnar deviation (RUD) respectively (p < 0.0001). Error was similarly low with a root mean squared error of 4.9° (FE) and 3.9° (RUD). Agreement between the two systems was quantified using Bland-Altman analysis, with bias and 95% limits of agreement of 3.1° ± 7.4° and -0.16° ± 7.7° for FE and RUD, respectively. These results compare favourably with current methods for occupational assessment, suggesting strong potential for field implementation.


Assuntos
Dispositivos Eletrônicos Vestíveis , Punho , Fenômenos Biomecânicos , Humanos , Impressão Tridimensional , Amplitude de Movimento Articular , Articulação do Punho
11.
Med Eng Phys ; 94: 1-7, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34303496

RESUMO

Gait analysis provides an important tool for the study and clinical evaluation of conditions which affect knee joint biomechanics. Collection of knee joint kinematics in real world environments during locomotor activities of daily living could provide quantitative evidence to help understand functional impairment. Unfortunately, the high cost and necessary technical expertise associated with current commercially available systems for kinematic monitoring serve as an impediment to their adoption outside of specialized research groups. We have developed a low-cost, custom wearable device to address these shortcomings. The 3D printed device is capable of measuring knee flexion/extension (F/E) and adduction/abduction (AD/AB) angles. Here, we present a gold standard validation of the novel device against an optoelectronic motion capture system (MCS). Data were collected during a treadmill walking task from 8 participants on 2 separate occasions. Agreement with the MCS was quantified via root mean squared error (RMSE), coefficients of multiple correlation (CMC), paired dependent t-tests and Bland-Altman analyses. The wearable device had an overall RMSE of 3.0° and 2.7° and a CMC of 0.97 and 0.91 in F/E and AD/AB respectively. Wearable device error showed no significant differences between test occasions, and Bland-Altman analyses showed low bias with narrow limits of agreement. These results demonstrate the capability of the device to accurately and reliably monitor knee F/E and AD/AB angles showing strong potential for field implementation.


Assuntos
Atividades Cotidianas , Dispositivos Eletrônicos Vestíveis , Fenômenos Biomecânicos , Marcha , Humanos , Articulação do Joelho , Impressão Tridimensional , Caminhada
12.
Ergonomics ; 64(10): 1281-1296, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33788671

RESUMO

Whole-body vibration and muscle fatigue have both been shown to delay the trunk muscle reflex response and increase trunk muscle activation, leading to an increased risk of low back injuries. However, the effects of whole-body vibration on previously fatigued trunk muscles have never been tested, despite studies showing that prolonged exposure to whole-body vibration can lead to muscle fatigue. The purpose of this research was to investigate the effects of muscle fatigue on muscle latency, muscle activation and perceived discomfort when exposed to whole-body vibration. The results showed that a fatigued muscle state resulted in increased muscle latency, muscle activation and perceived discomfort, which all escalate the risk of low back injuries. Additionally, the ISO 2631-1 comfort ratings did not increase with fatigue, showing a disconnect between these comfort ratings and the perceived discomfort ratings in a fatigued muscle state. Practitioner summary: When exposed to whole-body vibration, fatigued back muscles result in delayed muscle contraction, higher overall muscle activation and increased perceived discomfort, all of which are known to increase low back injury risk. ISO 2631-1 comfort ratings are unable to increase with fatigue, showing a disconnect with perceived discomfort ratings. Abbreviations: EMG: electromyography; EO: external oblique; IO: internal oblique; LE: lumbar erector spinae; LEO: left externaloblique; LIO: left internal oblique; LLE: left lumbar erector spinae; LTE: left thoracic erector spinae; MVC: maximum voluntarycontraction; REO: right external oblique; RIO: right internal oblique; RLE: right lumbar erector spinae; RTE: right thoracicerector spinae; SEAT: Seat Effective Amplitude Transmissibility; TE: thoracic erector spinae; WBV: whole body vibration.


Assuntos
Fadiga Muscular , Vibração , Eletromiografia , Humanos , Contração Muscular , Músculo Esquelético , Músculos , Músculos Paraespinais , Vibração/efeitos adversos
13.
Clin Biomech (Bristol, Avon) ; 40: 58-62, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27821275

RESUMO

BACKGROUND: The transverse carpal ligament is a major component of the carpal tunnel and is an important structure in the etiology of carpal tunnel syndrome. The current study aimed to quantify biaxial elastic moduli of the transverse carpal ligament and compare differences between sex and region (Radial and Ulnar). METHODS: Biaxial testing of radial and ulnar samples from twenty-two (thirteen male, nine female) human fresh frozen cadaveric transverse carpal ligaments was performed. Elastic moduli and stiffness were calculated and compared. FINDINGS: Biaxial elastic moduli of the transverse carpal ligament ranged from 0.76MPa to 3.38MPa, varying based on region (radial and ulnar), testing direction (medial-lateral and proximal-distal) and sex. Biaxial elastic moduli were significantly larger in the medial-lateral direction than the proximal-distal direction (P<0.001). Moduli were significantly larger ulnarly than radially (P=0.001). No significant differences due to gender were noted. INTERPRETATION: The regional variations in biaxial elastic moduli of the transverse carpal ligament may help improve non-invasive treatment methods for carpal tunnel syndrome, specifically manipulative therapy. The smaller biaxial elastic moduli found in the radial region suggests that manipulative therapy should be focused on the radial aspect of the transverse carpal ligament. The trend where female transverse carpal ligaments had larger stiffness in the ulnar location than males suggests that that the increased prevalence of carpal tunnel syndrome in women may be related to an increased stiffness of the transverse carpal ligament, however further work is warranted to evaluate this trend.


Assuntos
Ligamentos Articulares/fisiologia , Articulação do Punho/fisiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Cadáver , Síndrome do Túnel Carpal/fisiopatologia , Módulo de Elasticidade/fisiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fatores Sexuais
14.
Clin Biomech (Bristol, Avon) ; 29(6): 601-6, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24933659

RESUMO

BACKGROUND: The transverse carpal ligament is an integral factor in the etiology of carpal tunnel syndrome. The purpose of this study was to report the biomechanical properties of this ligament and quantify sex-based differences and regional variation in tissue response. We hypothesized that the mechanical response would not be uniform across the surface, and that female ligament properties would have higher strain profiles and lower mechanical properties. METHODS: Uniaxial testing of twelve (six males, six females) human fresh frozen cadaveric transverse carpal ligaments was carried out using an Instron Materials Testing Machine. Strain was measured via a non-contact optical method. FINDINGS: The following biomechanical properties of the transverse carpal ligament were reported in this work: failure strain (male: 9.2 (SD 5.0), female: 15.5 (SD 7.1)%), strength (male: 4.9 (SD 1.5), female: 4.5 (SD 1.6) MPa), and modulus of elasticity (male: 52.9 (SD 19.6), female: 38.2 (SD 21.9) MPa). The radial side displayed significantly more strain at failure compared to ulnar (P<0.0001). INTERPRETATION: The results of this study provide evidence that manipulative treatments should focus stretching on the radial half of the tissue, which experiences larger strains under uniform loading conditions. In addition, this work suggests possible sex-based differences in mechanical properties of the transverse carpal ligament, which could provide a basis for the development of improved non-surgical treatment methods for carpal tunnel syndrome. The results can also be applied to generate more accurate computational models of the wrist.


Assuntos
Elasticidade/fisiologia , Ligamentos Articulares/fisiologia , Fatores Sexuais , Articulação do Punho , Idoso , Fenômenos Biomecânicos/fisiologia , Cadáver , Síndrome do Túnel Carpal/etiologia , Feminino , Humanos , Ligamentos Articulares/anatomia & histologia , Masculino , Articulação do Punho/anatomia & histologia
15.
Work ; 47(1): 123-36, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24125900

RESUMO

OBJECTIVE: The purpose of this work was to help a steel industry partner select the most appropriate of three high end heavy equipment seats to retrofit a number of their heavy mobile machines used in the steel making process. PARTICIPANTS: The participants included 8 males (22.3 ± 2.0 yrs.) and 8 females (23.5 ± 1.8 yrs.) with no experience operating heavy mobile equipment. METHODS: Previously recorded 6-DOF chassis acceleration data from a Pot Hauler (a machine which picks up and transports pots of slag) were used to extract six, 20 second representative profiles for implementation on a lab-based heavy machine simulator (6-DOF Parallel Robotics System Corporation robot). Subjects sat on three heavy equipment seats (BeGe7150, Grammar MSG 95G1721, and a 6801 Isringhausen with the seat pan cushion retrofitted with a Skydex cushion) mounted on the simulator. Each subject completed three trials for each combination of seat (n=3) and vibration profile (n=6). Chassis and operator/seat interface vibration were measured by 2, 6-DOF vibration transducers. Variables included Seat Effective Amplitude Transmissibility (SEAT) (X,Y,Z,Roll,Pitch,Yaw,6DOF Vector Sum) to determine if the seat was attenuating or amplifying the vibration, 6-degree of freedom (DOF) vibration total value weighted predicted comfort (Avc) (according to ISO 2631-1) and operator reported comfort (ORC). RESULTS: Factorial ANOVAs revealed significant differences (p < or = 0.05) between seats for all SEAT variables but different seats performed better than others depending on the axis. Significant differences between males and females were observed for SEAT in X,Y, and Pitch as well as for Avs. As expected there were significant differences between vibration profiles for all assessed variables. A number of interaction effects were observed, the most frequently occurring of which was between seat and vibration profile. CONCLUSIONS: Based upon the number of seat and vibration profile interactions, results suggest that a single seat is not suited for all tested conditions. However, SEAT values for all of the seats tested were extremely low (e.g., 6-DOF SEAT < 30%) indicating that all of the seats were capable of providing good vibration attenuation.


Assuntos
Metalurgia , Veículos Automotores , Exposição Ocupacional/prevenção & controle , Vibração , Adulto , Desenho de Equipamento/normas , Feminino , Humanos , Masculino , Veículos Automotores/normas , Exposição Ocupacional/análise , Adulto Jovem
16.
Clin Anat ; 25(3): 366-72, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21853467

RESUMO

Differential activation of specific regions within a skeletal muscle has been linked to the presence of neuromuscular compartments. However, few studies have investigated the extra- or intramuscular innervation throughout the muscle volume of extensor carpi radialis longus (ECRL) and brevis (ECRB). The aim of this study was to determine the presence of neuromuscular partitions in ECRL and ECRB based on the extra- and intramuscular innervation using three-dimensional modeling. The extra- and intramuscular nerve distribution was digitized and reconstructed in 3D in all the muscle volumes using Autodesk Maya in seven formalin embalmed cadaveric specimens (mean age, 75.7 ± 15.2 years). The intramuscular nerve distribution was modeled in all the muscle volumes. ECRL was found to have two neuromuscular compartments, superficial and deep. One branch from the radial nerve proper was found to innervate ECRL. This branch was divided into anterior and posterior branches to the superficial and deep compartments, respectively. Five innervation patterns were identified in ECRB with partitioning of the muscle belly into two, three, or four compartments, in a proximal to distal direction depending on the number of nerve branches entering the muscle belly. The ECRL and ECRB both demonstrated neuromuscular compartmentalization based on intramuscular innervation. According to the partitioning hypothesis, a muscle may be differentially activated depending on the required function of the muscle, thus allowing multifunctional muscles to contribute to a variety of movements. Therefore, the increased number of neuromuscular partitions in ECRB when compared with ECRL could be due to the need for more differential recruitment in the ECRB depending on force requirements.


Assuntos
Imageamento Tridimensional/métodos , Músculo Esquelético/inervação , Punho/anatomia & histologia , Idoso , Cadáver , Feminino , Humanos , Masculino , Modelos Anatômicos , Fibras Musculares Esqueléticas , Músculo Esquelético/fisiologia
17.
J Atten Disord ; 16(6): 478-90, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21490175

RESUMO

OBJECTIVE: The present study examined the role of negative emotions on driving performance in relation to ADHD, by comparing young adults scoring high on measures of ADHD (n = 20) with a control group (n = 22). METHOD: The authors used cardiorespiratory physiological measures, simulated driving behavior, and self-report to examine how participants with high and low ADHD symptoms responded to frustration and to determine how frustration affected simulated driving performance. RESULTS: Groups did not differ in operational driving skills, but participants with high ADHD symptoms reported more frustration and exhibited more impairment at the tactical level of driving performance than the controls. There was significant suppression of respiratory sinus arrhythmia from resting baseline during tasks, but it did not differ between groups during driving. CONCLUSION: This article proposes that remedial driver training for ADHD populations should focus more on the control of negative emotions rather than on attention or fundamental driving skills.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade/psicologia , Condução de Veículo/psicologia , Frustração , Frequência Cardíaca/fisiologia , Desempenho Psicomotor/fisiologia , Adulto , Atenção/fisiologia , Transtorno do Deficit de Atenção com Hiperatividade/fisiopatologia , Eletrocardiografia , Feminino , Humanos , Masculino
18.
Comput Methods Biomech Biomed Engin ; 13(6): 741-8, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20526917

RESUMO

Physiological cross-sectional area (PCSA) is used to compare force-producing capabilities of muscles. A limitation of PCSA is that it cannot be measured directly from a specimen, as there is usually no area within the muscle traversed by all fibres. Traditionally, a formula requiring averaged architectural parameters has been used. The purpose of this paper is to describe the development of a fibre bundle element (FBE) method to calculate PCSA from digitised fibre bundle data of five architecturally distinct muscles and compare the FBE and PCSA formula. An FBE method was developed that used a serially arranged set of cylinders as the volumetric representation of each fibre bundle, and PCSA was computed as the summation of the cross-sectional area of each FBE. Four of five muscles had significantly different PCSA between FBE and formula methods. The FBE method provides an approach that considers architectural variances while minimising the need for averaged architectural parameters.


Assuntos
Modelos Químicos , Músculo Esquelético/fisiologia , Idoso , Idoso de 80 Anos ou mais , Algoritmos , Humanos , Pessoa de Meia-Idade
19.
Work ; 35(1): 15-26, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20164622

RESUMO

BACKGROUND: Whole-body vibration is a significant workplace risk factor for discomfort and injury in many work sectors. The current approach for evaluating vibration exposures typically involves field studies of seatpan acceleration while the operators perform typical workplace activities. These vibration exposures are then compared to international standards to evaluate the risk of discomfort or injury. This approach does not enable systematic and controlled study of specific workplace factors such as the effect of seating, and it is difficult and expensive to perform. APPROACH TO PAPER: We have developed a systematic approach for studying whole-body vibration in the laboratory setting. This approach involves field studies of occupational exposures measuring the 6 degree of freedom chassis accelerations (translational and rotational) and replication of these exposures in the laboratory. FINDINGS: To date, as a research team, we have collected chassis vibration data from specific vehicles in the forestry (skidders), mining (load-haul-dump vehicles), and construction (scrapers) sectors. We have processed these exposures to develop a library of representative vibration motions, and have replicated these motions in the laboratory using a robotic platform. CONCLUSIONS: This systematic approach of combining field- and laboratory-based measures has facilitated research into specific relevant questions such as the effects of multi axis vibrations on the physical risks to operator health and direct evaluation of the vibration attenuation properties of industrial seats.


Assuntos
Simulação por Computador , Veículos Automotores , Exposição Ocupacional/análise , Robótica , Vibração , Aceleração , Algoritmos , Ergonomia , Humanos
20.
J Biomech Eng ; 131(9): 094504, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19725701

RESUMO

Determination of the biomechanical properties of soft tissues such as tendons and ligaments is dependent on the accurate measurement of their cross-sectional area (CSA). Measurement methods, which involve contact with the specimen, are problematic because soft tissues are easily deformed. Noncontact measurement methods are preferable in this regard, but may experience difficulty in dealing with the complex cross-sectional shapes and glistening surfaces seen in soft tissues. Additionally, existing CSA measurement systems are separated from the materials testing machine, resulting in the inability to measure CSA during testing. Furthermore, CSA measurements are usually made in a different orientation, and with a different preload, prior to testing. To overcome these problems, a noncontact laser reflectance system (LRS) was developed. Designed to fit in an Instron 8872 servohydraulic test machine, the system measures CSA by orbiting a laser transducer in a circular path around a soft tissue specimen held by tissue clamps. CSA measurements can be conducted before and during tensile testing. The system was validated using machined metallic specimens of various shapes and sizes, as well as different sizes of bovine tendons. The metallic specimens could be measured to within 4% accuracy, and the tendons to within an average error of 4.3%. Statistical analyses showed no significant differences between the measurements of the LRS and those of the casting method, an established measurement technique. The LRS was successfully used to measure the changing CSA of bovine tendons during uniaxial tensile testing. The LRS developed in this work represents a simple, quick, and accurate way of reconstructing complex cross-sectional profiles and calculating cross-sectional areas. In addition, the LRS represents the first system capable of automatically measuring changing CSA of soft tissues during tensile testing, facilitating the calculation of more accurate biomechanical properties.


Assuntos
Anatomia Transversal/métodos , Lasers , Tendões/anatomia & histologia , Tendões/fisiologia , Animais , Bovinos , Desenho de Equipamento , Análise de Falha de Equipamento , Técnicas In Vitro , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Resistência à Tração/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...