Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioengineering (Basel) ; 10(10)2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37892874

RESUMO

The paper proposes a federated content-based medical image retrieval (FedCBMIR) tool that utilizes federated learning (FL) to address the challenges of acquiring a diverse medical data set for training CBMIR models. CBMIR is a tool to find the most similar cases in the data set to assist pathologists. Training such a tool necessitates a pool of whole-slide images (WSIs) to train the feature extractor (FE) to extract an optimal embedding vector. The strict regulations surrounding data sharing in hospitals makes it difficult to collect a rich data set. FedCBMIR distributes an unsupervised FE to collaborative centers for training without sharing the data set, resulting in shorter training times and higher performance. FedCBMIR was evaluated by mimicking two experiments, including two clients with two different breast cancer data sets, namely BreaKHis and Camelyon17 (CAM17), and four clients with the BreaKHis data set at four different magnifications. FedCBMIR increases the F1 score (F1S) of each client from 96% to 98.1% in CAM17 and from 95% to 98.4% in BreaKHis, with 11.44 fewer hours in training time. FedCBMIR provides 98%, 96%, 94%, and 97% F1S in the BreaKHis experiment with a generalized model and accomplishes this in 25.53 fewer hours of training.

2.
Cancers (Basel) ; 15(1)2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36612037

RESUMO

The rise of Artificial Intelligence (AI) has shown promising performance as a support tool in clinical pathology workflows. In addition to the well-known interobserver variability between dermatopathologists, melanomas present a significant challenge in their histological interpretation. This study aims to analyze all previously published studies on whole-slide images of melanocytic tumors that rely on deep learning techniques for automatic image analysis. Embase, Pubmed, Web of Science, and Virtual Health Library were used to search for relevant studies for the systematic review, in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) checklist. Articles from 2015 to July 2022 were included, with an emphasis placed on the used artificial intelligence methods. Twenty-eight studies that fulfilled the inclusion criteria were grouped into four groups based on their clinical objectives, including pathologists versus deep learning models (n = 10), diagnostic prediction (n = 7); prognosis (n = 5), and histological features (n = 6). These were then analyzed to draw conclusions on the general parameters and conditions of AI in pathology, as well as the necessary factors for better performance in real scenarios.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...