Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22269685

RESUMO

BackgroundAfter admission to hospital, COVID-19 progresses in a substantial proportion of patients to critical disease that requires intensive care unit (ICU) admission. MethodsIn a pragmatic, non-blinded trial, 387 patients aged 40-90 years were randomised to receive treatment with SoC plus doxycycline (n=192) or SoC only (n=195). The primary outcome was the need for ICU admission as judged by the attending physicians. Three types of analyses were carried out for the primary outcome: "Intention to treat" (ITT) based on randomisation; "Per protocol" (PP), excluding patients not treated according to randomisation; and "As treated" (AT), based on actual treatment received. The trial was undertaken in six hospitals in India with high-quality ICU facilities. An online application serving as the electronic case report form was developed to enable screening, randomisation and collection of outcomes data. ResultsAdherence to treatment per protocol was 95.1%. Among all 387 participants, 77 (19.9%) developed critical disease needing ICU admission. In all three primary outcome analyses, doxycycline was associated with a relative risk reduction (RRR) and absolute risk reduction (ARR): ITT 31.6% RRR, 7.4% ARR (P=0.063); PP 40.7% RRR, 9.6% ARR (P=0.017); AT 43.2% RRR, 10.8% ARR (P=0.007), with numbers needed to treat (NTT) of 13.4 (ITT), 10.4 (PP), and 9.3 (AT), respectively. Doxycycline was well tolerated with not a single patient stopping treatment due to adverse events. ConclusionsIn hospitalized COVID-19 patients, doxycycline, a safe, inexpensive, and widely available antibiotic with anti-inflammatory properties, reduces the need for ICU admission when added to SoC.

2.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21268487

RESUMO

Neutralizing antibodies (NAbs), and their concentration in sera of convalescents and vaccinees are a solid correlate of protection from COVID-19. The antibody concentrations in clinical samples that neutralize SARS-CoV-2 are difficult and very cumbersome to assess with conventional virus neutralization tests (cVNTs), which require work with the infectious virus and biosafety level 3 containment precautions. Alternative virus neutralization tests currently in use are mostly surrogate tests based on direct or competitive ELISA formats or use viral vectors with the spike protein as the single structural component of SARS-CoV-2. To overcome these obstacles, we developed a virus-free, safe and very fast (4.5 h) in vitro diagnostic test based on engineered yet authentic SARS-CoV-2 virus-like-particles (VLPs). They share all features of the original SARS-CoV-2 but lack the viral RNA genome and thus are non-infectious. NAbs induced by infection or vaccination, but also potentially neutralizing monoclonal antibodies can be reliably quantified and assessed with ease and within hours with our test, because they interfere and block the ACE2-mediated uptake of VLPs by recipient cells. Results from the VLP neutralization test (VLPNT) show excellent correlation to a cVNT with fully infectious SARS-CoV-2 and allow to estimate the reduced neutralization capacity of COVID-19 vaccinee sera with variants of concern of SARS-CoV-2. Author summaryThe current pandemic caused by SARS-CoV-2 is a major challenge not only for COVID-19 patients, medical staff, healthcare systems and the general public, but also virologists and clinical laboratories. A particular challenge are safety issues which require biological safety level 3 to work with and study the pathogen. An alternative are virus-like particles (VLPs) of SARS-CoV-2, which are authentic in terms of viral structure and function but are harmless bioproducts in nature. We engineered VLPs which are close-to-perfect mimics of SARS-CoV-2 by all structural, biochemical, physical and functional criteria tested. SARS-CoV-2 VLPs were used in virus neutralization tests (VNTs). Because high concentrations of neutralizing antibodies correlate with protection from COVID-19 practical VNTs are urgently needed. We developed an authentic, virus-free, thus safe yet very fast in vitro diagnostic test with SARS-CoV-2 VLPs. Virus neutralizing antibodies induced by natural infection or vaccination but also certain monoclonal antibodies inhibit VLP fusion with recipient cells carrying ACE2. Quantitative results from a conventional neutralization test with fully infectious SARS-CoV-2 and results from the VLP-based neutralization test correlate perfectly. The setup of the test is very flexible and allows to analyze sera for their neutralizing capacity against different variants of concern and in a standardized assay format.

3.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-445809

RESUMO

Disease manifestations in COVID-19 range from mild to severe illness associated with a dysregulated innate immune response. Alterations in function and regeneration of dendritic cells (DC) and monocytes may contribute to immunopathology and influence adaptive immune responses in COVID-19 patients. We analyzed circulating DC and monocyte subsets in 65 hospitalized COVID-19 patients with mild/moderate or severe disease from acute disease to recovery and in healthy controls. Persisting reduction of all DC subpopulations was accompanied by an expansion of proliferating Lineage- HLADR+ cells lacking DC markers. Increased frequency of the recently discovered CD163+ CD14+ DC3 subpopulation in patients with more severe disease was associated with systemic inflammation, activated T follicular helper cells, and antibody-secreting cells. Persistent downregulation of CD86 and upregulation of PD-L1 in conventional DC (cDC2 and DC3) and classical monocytes associated with a reduced capacity to stimulate naive CD4+ T cells correlated with disease severity. Long-lasting depletion and functional impairment of DCs and monocytes may have consequences for susceptibility to secondary infections and therapy of COVID-19 patients.

4.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21257210

RESUMO

While some COVID-19 patients maintain SARS-CoV-2-specific serum IgGs for more than 6 months post-infection, others, especially mild cases, eventually lose IgG levels. We aimed to assess the persistence of SARS-CoV-2-specific B cells in patients who have lost specific IgGs and analyzed the reactivity of the immunoglobulins produced by these B cells. Circulating IgG memory B cells specific for SARS-CoV-2 were detected in all 16 patients 1-8 months post-infection, and 11 participants had specific IgA B cells. Four patients lost specific serum IgG after 5-8 months but had SARS-CoV-2-specific-B-cell levels comparable to those of seropositive donors. Immunoglobulins produced after in vitro differentiation blocked receptor-binding domain (RBD) binding to the cellular receptor ACE-2, indicating neutralizing activity. Memory-B-cell-derived IgGs recognized the RBD of B.1.1.7 similarly to the wild-type, while reactivity to B.1.351 and P.1. decreased by 30% and 50%, respectively. Memory-B-cell differentiation into antibody-producing cells is a more sensitive method for detecting previous infection than measuring serum antibodies. Circulating SARS-CoV-2 IgG memory B cells persist, even in the absence of specific serum IgG; produce neutralizing antibodies; and show differential cross-reactivity to emerging variants of concern. These features of SARS-CoV-2-specific memory B cells will help to understand and promote long-term protection.

5.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-429351

RESUMO

The immune system of most SARS-CoV-2 infected individuals limits viral spread to the upper airways without pulmonary involvement. This prevents the development of pneumonic COVID-19. However, the protective immunological responses causative of successful viral containment in the upper airways remain unclear. Here, we combine longitudinal single-cell RNA sequencing, proteomic profiling, multidimensional flow cytometry, RNA-Seq of FACS-sorted leukocyte subsets and multiplex plasma interferon profiling to uncover temporally resolved protective immune signatures in non-pneumonic and ambulatory SARS-CoV-2 infected patients. We compare host responses in a high-risk patient population infected with SARS-CoV-2 but without pulmonary involvement to patients with COVID-19 pneumonia. Our data reveal a distinct immunological signature of successful viral containment, characterized by an early prominent interferon stimulated gene (ISG) upregulation across immune cell subsets. In addition, reduced cytotoxic potential of Natural Killer (NK) and T cells, as well as a monocyte phenotype with immune-modulatory potential are hallmarks of protective immunity. Temporal resolution across disease trajectories highlights ISG upregulation as particularly prominent early in the disease and confirms increased expression also in comparison to healthy controls. We validate this distinct temporal ISG signature by in-depth RNA-seq of FACS-sorted leukocyte subsets in a large prospective ambulatory SARS-CoV-2 infected cohort confirming early and robust ISG upregulation particularly in monocytes and T cells. In conclusion, our data demonstrate a protective ISG phenotype in patients with successful containment of SARS-CoV-2 infection without progression to COVID-19. This early protective interferon response might be exploited as a therapeutic approach and for disease course prediction.

6.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20248871

RESUMO

Prolonged shedding of infectious SARS-CoV-2 has recently been reported in a number of immunosuppressed individuals with COVID-19. Here, we describe the detection of high levels of replication-competent SARS-CoV-2 in specimens taken from the respiratory tract of a B-cell depleted patient up to 154 days after initial COVID-19 diagnosis concomitant with the development of high mutation rate. In this patient, a total of 11 nonsynonymous mutations were detected in addition to the Y144 deletion in the spike protein of SARS-CoV-2. Virus evolution studies revealed a dramatic diversification in viral population coinciding with treatment with convalescent plasma and clinical respiratory deterioration. Our findings highlight the urgent need for continuous real-time surveillance of genetic changes of SARS-CoV-2 adaptation alongside immunological investigations in patients with severely compromised humoral responses who may shed infectious virus over prolonged periods of time.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...