Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Oral Microbiol ; 14(1): 2107691, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35978839

RESUMO

Background: Porphyromonas gingivalis is part of the subgingival biofilm and a keystone species in the development of periodontitis. Interactions between P.gingivalis and other bacteria in biofilms have been shown to affect bacterial virulence. Helicobacter pylori also inhabits the subgingival biofilm, but the consequences of interactions there with P.gingivalis remain unknown. Here, we investigated how the pre-incubation of P.gingivalis with H.pylori affects P.gingivalis virulence. Methods: We assayed P.gingivalis internalization by oral keratinocytes (OKs), hemagglutination and biofilm formation to identify alterations in virulence after pre-incubation with H. pylori. Also, we evaluated viability and migration of OKs infected with P. gingivalis, as well as the role of toll-like receptor 4 (TLR4).   In addition, we quantified the mRNA of genes associated with P.gingivalis virulence. Results: Pre-incubation of P.gingivalis with H.pylori enhanced P.gingivalis biofilm formation, bacterial internalization into OKs and hemagglutination. Infection with pre-incubated P.gingivalis increased OK migration in a manner dependent on the O-antigen and linked to  increased expression of the gingipain RgpB. Also, OK TLR4 participates in these events, because upon TLR4 knock-down, pre-incubated P.gingivalis no longer stimulated OK migration. Discussion: We provide here for the first time insight to the consequences of direct interaction between P.gingivalis and H.pylori. In doing so, we shed light on the mechanism by which H. pylori presence in the oral cavity increases the severity or progression of periodontitis.

2.
Artigo em Inglês | MEDLINE | ID: mdl-31355151

RESUMO

Porphyromonas gingivalis has been extensively associated with both the onset and progression of periodontitis. We previously isolated and characterized two P. gingivalis strains, one from a patient exhibiting severe chronic periodontitis (CP3) and another from a periodontally healthy individual (H3). We previously showed that CP3 and H3 exhibit differences in virulence since H3 showed a lower resistance to cationic peptides compared with CP3, and a lower ability to induce proliferation in gingival epithelial cells. Here, we aimed to determine whether differences in virulence between these two strains are associated with the presence or absence of specific genes encoding virulence factors. We sequenced the whole genomes of both P. gingivalis CP3 and H3 and conducted a comparative analysis regarding P. gingivalis virulence genetic determinants. To do so, we performed a homology search of predicted protein sequences in CP3 and H3 genomes against the most characterized virulence genes for P. gingivalis available in the literature. In addition, we performed a genomic comparison of CP3 and H3 with all the 62 genomes of P. gingivalis found in NCBI's RefSeq database. This approach allowed us to determine the evolutionary relationships of CP3 and H3 with other virulent and avirulent strains; and additionally, to detect variability in presence/absence of virulence genes among P. gingivalis genomes. Our results show genetic variability in the hemagglutinin genes. While CP3 possesses one copy of hagA and two of hagC, H3 has no hagA and only one copy of hagC. Experimentally, this finding is related to lower in vitro hemmaglutination ability of H3 compared to CP3. Moreover, while CP3 encodes a gene for a major fimbrium subunit FimA type 4 (CP3_00160), H3 possess a FimA type 1 (H3_01400). Such genetic differences are in agreement with both lower biofilm formation ability and less intracellular invasion to oral epithelial cells exhibited by H3, compared with the virulent strain CP3. Therefore, here we provide new results on the genome sequences, comparative genomics analyses, and phenotypic analyses of two P. gingivalis strains. The genomics comparison of these two strains with the other 62 genomes included in the analysis provided relevant results regarding genetic determinants and their association with P. gingivalis virulence.


Assuntos
Periodontite Crônica/patologia , Regulação Bacteriana da Expressão Gênica , Genoma Bacteriano , Porphyromonas gingivalis/genética , Porphyromonas gingivalis/patogenicidade , Fatores de Virulência/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , Estudos de Casos e Controles , Linhagem Celular , Periodontite Crônica/microbiologia , Células Epiteliais/microbiologia , Proteínas de Fímbrias/genética , Proteínas de Fímbrias/metabolismo , Ontologia Genética , Variação Genética , Genômica , Gengiva/microbiologia , Humanos , Lectinas/genética , Lectinas/metabolismo , Anotação de Sequência Molecular , Fenótipo , Filogenia , Porphyromonas gingivalis/classificação , Porphyromonas gingivalis/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Análise de Sequência de DNA , Virulência , Fatores de Virulência/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...