Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Naturwissenschaften ; 101(7): 557-63, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24913128

RESUMO

Magnetoreception has been convincingly demonstrated in only a few mammalian species. Among rodents, magnetic compass orientation has been documented in four species of subterranean mole rats and two epigeic (i.e. active above ground) species-the Siberian hamster and the C57BL/6J mouse. The mole rats use the magnetic field azimuth to determine compass heading; their directional preference is spontaneous and unimodal, and their magnetic compass is magnetite-mediated. By contrast, the primary component of orientation response is learned in the hamster and the mouse, but both species also exhibit a weak spontaneous bimodal preference in the natural magnetic field. To determine whether the magnetic compass of wild epigeic rodents features the same functional properties as that of laboratory rodents, we investigated magnetic compass orientation in the bank vole Clethrionomys glareolus (Cricetidae, Rodentia). The voles exhibited a robust spontaneous bimodal directional preference, i.e. built nests and slept preferentially along the north-south axis, and deflected their directional preference according to a shift in the direction of magnetic north, clearly indicating that they were deriving directional information from the magnetic field. Thus, bimodal, axially symmetrical directional choice seems to be a common feature shared by epigeic rodents. However, spontaneous directional preference in the bank vole appeared to be more pronounced than that reported in the hamster and the mouse. These findings suggest that bank voles are well suited for future studies investigating the adaptive significance and mechanisms of magnetic orientation in epigeic rodents.


Assuntos
Arvicolinae/fisiologia , Fenômenos Magnéticos , Orientação/fisiologia , Animais , Feminino , Masculino , Comportamento de Nidação/fisiologia
2.
J Exp Biol ; 215(Pt 20): 3649-54, 2012 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-22855619

RESUMO

Evidence for magnetoreception in mammals remains limited. Magnetic compass orientation or magnetic alignment has been conclusively demonstrated in only a handful of mammalian species. The functional properties and underlying mechanisms have been most thoroughly characterized in Ansell's mole-rat, Fukomys anselli, which is the species of choice due to its spontaneous drive to construct nests in the southeastern sector of a circular arena using the magnetic field azimuth as the primary orientation cue. Because of the remarkable consistency between experiments, it is generally believed that this directional preference is innate. To test the hypothesis that spontaneous southeastern directional preference is a shared, ancestral feature of all African mole-rats (Bathyergidae, Rodentia), we employed the same arena assay to study magnetic orientation in two other mole-rat species, the social giant mole-rat, Fukomys mechowii, and the solitary silvery mole-rat, Heliophobius argenteocinereus. Both species exhibited spontaneous western directional preference and deflected their directional preference according to shifts in the direction of magnetic north, clearly indicating that they were deriving directional information from the magnetic field. Because all of the experiments were performed in total darkness, our results strongly suggest that all African mole-rats use a light-independent magnetic compass for near-space orientation. However, the spontaneous directional preference is not common and may be either innate (but species-specific) or learned. We propose an experiment that should be performed to distinguish between these two alternatives.


Assuntos
Campos Magnéticos , Ratos-Toupeira/fisiologia , Orientação/fisiologia , Animais , Comportamento Animal , Escuridão , Feminino , Masculino , Ratos , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...