Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 5(51): 32975-32983, 2020 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-33403259

RESUMO

In situ TEM gas-cell imaging and spectroscopy with in situ XRD have been applied to reveal morphological changes in NiFe2O4@Co3O4 core-shell nanoparticles in hydrogen. The core-shell structure is retained upon reduction under mild conditions (180 °C for 1 h), resulting in a partially reduced shell. The core-shell structure was retained after exposing these reduced NiFe2O4@Co3O4 core-shell nanoparticles to Fischer-Tropsch conditions at 230 °C and 20 bar. Slightly harsher reduction (230 °C, 2 h) resulted in restructuring of the NiFe2O4@Co3O4 core-shell nanoparticles to form cobalt islands in addition to partially reduced NiFe2O4. NiFe2O4 underwent further transformation upon exposure to Fischer-Tropsch conditions, resulting in the formation of iron carbide and nickel/iron-nickel alloy. The turnover frequency in the Fischer-Tropsch synthesis over NiFe2O4@Co3O4 core-shell nanoparticles reduced in hydrogen at 180 °C for 1 h was estimated to be less than 0.02 s-1 (cobalt-time yield of 8.40 µmol.g-1.s-1) with a C5+ selectivity of 38 C-%. The low turnover frequency under these conditions in relation to the turnover frequency obtained with unsupported cobalt is attributed to the strain in the catalytically active cobalt.

2.
Dalton Trans ; 48(36): 13858-13868, 2019 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-31483416

RESUMO

The formation of mixed-metal cobalt oxides, representing potential metal-support compounds for cobalt-based catalysts, has been observed at high conversion levels in the Fischer-Tropsch synthesis over metal oxide-supported cobalt catalysts. An often observed increase in the carbon dioxide selectivity at Fischer-Tropsch conversion levels above 80% has been suggested to be associated to the formation of water-gas shift active oxidic cobalt species. Mixed-metal cobalt oxides, namely cobalt aluminate and cobalt titanate, were therefore synthesised and tested for potential catalytic activity in the water-gas shift reaction. We present a preparation route for amorphous mixed-metal oxides via thermal treatment of metal precursors in benzyl alcohol. Calcination of the as prepared nanoparticles results in highly crystalline phases. The nano-particulate mixed-metal cobalt oxides were thoroughly analysed by means of X-ray diffraction, Raman spectroscopy, temperature-programmed reduction, X-ray absorption near edge structure spectroscopy, extended X-ray absorption fine structure, and high-resolution scanning transmission electron microscopy. This complementary characterisation of the synthesised materials allows for a distinct identification of the phases and their properties. The cobalt aluminate prepared has a cobalt-rich composition (Co1+xAl2-xO4) with a homogeneous atomic distribution throughout the nano-particulate structures, while the perovskite-type cobalt titanate (CoTiO3) features cobalt-lean smaller particles associated with larger ones with an increased concentration of cobalt. The cobalt aluminate prepared showed no water-gas shift activity in the medium-shift temperature range, while the cobalt titanate sample catalysed the conversion of water and carbon monoxide to hydrogen and carbon dioxide after an extended activation period. However, this perovskite underwent vast restructuring forming metallic cobalt, a known catalyst for the water-gas shift reaction at temperatures exceeding typical conditions for the cobalt-based Fischer-Tropsch synthesis, and anatase-TiO2. The partial reduction of the mixed-metal oxide and segregation was identified by means of post-run characterisation using X-ray diffraction, Raman spectroscopy, and transmission electron microscopy energy-dispersive spectrometry.

3.
ChemSusChem ; 6(10): 1898-906, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24108516

RESUMO

Aberration-corrected transmission electron microscopy and high-angle annular dark field imaging was used to investigate the surface structures and internal defects of CeO2 nanoparticles (octahedra, rods, and cubes). Further, their catalytic reactivity in the water-gas shift (WGS) reaction and the exposed surface sites by using FTIR spectroscopy were tested. Rods and octahedra expose stable (111) surfaces whereas cubes have primarily (100) facets. Rods also had internal voids and surface steps. The exposed planes are consistent with observed reactivity patterns, and the normalized WGS reactivity of octahedra and rods were similar, but the cubes were more reactive. In situ FTIR spectroscopy showed that rods and octahedra exhibit similar spectra for -OH groups and that carbonates and formates formed upon exposure to CO whereas for cubes clear differences were observed. These results provide definitive information on the nature of the exposed surfaces in these CeO2 nanostructures and their influence on the WGS reactivity.


Assuntos
Monóxido de Carbono/química , Cério/química , Microscopia Eletrônica de Transmissão , Nanopartículas/química , Água/química , Adsorção , Hidrogênio/química , Propriedades de Superfície , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA