Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant J ; 47(4): 629-39, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16856982

RESUMO

Using activation tagging in the Arabidopsis Col-0 rps2-101C background, we identified a mutant (FMO1-3D) that showed virtually no symptoms after inoculation with virulent Pseudomonas syringae pv. tomato DC3000 bacteria. The dominant, gain-of-function phenotype of the FMO1-3D mutant is due to over-expression of a class 3 flavin-containing mono-oxygenase (FMO). We recapitulated the FMO1-3D mutant phenotype in independent transgenic Col-0 lines over-expressing the FMO1 cDNA under the control of the 35S CaMV promoter. The increased basal resistance observed in the FMO1-3D mutant was also effective against the taxonomically unrelated downy mildew-causing pathogen Hyaloperonospora parasitica. By investigating the progeny from crosses of the FMO1-3D mutant with the NahG transgenic line, we showed that the enhanced basal resistance phenotype was dependent on the accumulation of salicylic acid. FMO1-3D plants showed wild-type resistant reactions after inoculation with avirulent bacteria, indicating that the R-gene-mediated defence physiology was not compromised by FMO1 over-expression. Transcripts of the class 3 FMO1 gene accumulated within 6 h after inoculation of wild-type Col-0 plants with avirulent Pst + avrRpt2 cells. Moreover, a T-DNA insertion into the FMO1 gene resulted in enhanced susceptibility to virulent Pseudomonas and Hyaloperonospora parasitica, suggesting that expression of the FMO1 gene is a hitherto undescribed component of the plant's resistance repertoire. We discuss the possibility that the FMO may participate in the detoxification of virulence factors produced by pathogens.


Assuntos
Arabidopsis/enzimologia , Oxigenases/metabolismo , Doenças das Plantas/microbiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Mutação , Oxigenases/química , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia , Plantas Geneticamente Modificadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...