Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 209
Filtrar
1.
Biomed Opt Express ; 15(7): 4281-4291, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-39022532

RESUMO

Biosensing plays a pivotal role in various scientific domains, offering significant contributions to medical diagnostics, environmental monitoring, and biotechnology. Fluorescence biosensing relies on the fluorescence emission from labelled biomolecules to enable sensitive and selective identification and quantification of specific biological targets in various samples. Photonic crystal fibers (PCFs) have led to the development of optofluidic fibers enabling efficient light-liquid interaction within small liquid volume. Herein, we present the development of a user-friendly optofluidic-fiber platform with simple hardware requirements for sensitive and reliable fluorescence biosensing with high measurement repeatability. We demonstrate a sensitivity improvement of the fluorescence emission up to 17 times compared to standard cuvette measurement, with a limit of detection of Cy5 fluorophore as low as 100 pM. The improvement in measurement repeatability is exploited for detecting haptoglobin protein, a relevant biomarker to diagnose several diseases, by using commercially available Cy5 labelled antibodies. The study aims to showcase an optofluidic platform leveraging the benefits provided by optofluidic fibers, which encompass easy light injection, robustness, and high sensitivity.

2.
Opt Express ; 32(10): 18216-18223, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38858983

RESUMO

Solid core photonic crystal fibers (SC-PCFs) have garnered attention as probes for surface-enhanced Raman spectroscopy (SERS) due to their potential as optofluidic devices, offering heightened sensitivity and reliability compared to traditional planar/colloidal nanoparticle-based SERS platforms. A smaller core allows for more light interaction but might compromise sensitivity and reliability due to reduced surface area for interaction. Here, we introduce an innovative SC-PCF design aimed at resolving the trade-off between increasing the evanescent field fraction and the core surface area. By substituting a suspended silica rod with a suspended thin-silica ring, we augment the surface area for attached nanoparticles by one order of magnitude while retaining a substantial amount of evanescent light interaction with the analyte. Experimental findings showcase an improved sensitivity in SERS signal compared to previously reported top-performing PCF sensor designs. Importantly, with necessary refinement and optimization, this innovative fiber design extends beyond SERS applications, potentially amplifying the sensitivity of various other fiber-based sensing platforms.

3.
Photoacoustics ; 38: 100611, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38764522

RESUMO

Psoriasis is a chronic inflammatory skin disease, characterized by thick scaly plaques. It imposes a notable disease burden with varying levels of severity affecting the quality of life significantly. Current disease severity assessment relies on semi-objective visual inspection based on the Psoriasis Area and Severity index (PASI) score that might not be sensitive to sub-clinical changes. Histology of psoriasis skin lesions necessitate invasive skin biopsies. This indicates an unmet need for a non-invasive, objective and quantitative approach to assess disease severity serially. Herein, we employ multispectral Raster-Scanning Optoacoustic Mesoscopy (ms-RSOM) derived structural and microvascular functional imaging metrics to examine the lesional and non-lesional skin in psoriasis subjects across different severities and also evaluate the treatment outcome in a subject with topical steroids and biologics, such as adalimumab. ms-RSOM derived structural metrics like epidermal thickness and total blood volume (TBV) and microvascular functional information such as oxygen saturation (sO2) are evaluated by spectrally resolving the endogenous chromophores like melanin, oxy-, and deoxy-hemoglobin. Initial findings reveal an elevated sO2 and TBV with severity in lesional and non-lesional psoriasis skin, thus representing increasing inflammation. An increase in epidermal thickness is also noted with the degree of severity, corresponding to the inflammation and increased abnormal cell growth. As a marker to evaluate the treatment response, we observed a decrease in epidermal thickness, sO2, and TBV in a psoriasis patient post-treatment, which is consistent with the decrease in the PASI score from 4.1 to 1.9. We envision that ms-RSOM has a huge potential to be translated into routine clinical setting for the diagnosis of severity and assessment of treatment monitoring in psoriasis subjects.

4.
APL Bioeng ; 8(1): 016109, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38390315

RESUMO

We present a robust, cost-effective (<2000 USD), and portable optical diffuse speckle pulsatile flowmetry (DSPF) device with a flexible handheld probe for deep tissue blood flow measurement in the human foot as well as a first-in-man observational clinical study using the proposed optical device for tissue ischemia assessment and peripheral artery disease (PAD) diagnosis. Blood flow in tissue is inherently pulsatile in nature. However, most conventional methods cannot measure deep tissue-level pulsatile blood flow noninvasively. The proposed optical device can measure tissue-level pulsatile blood flow ∼6 mm underneath the skin surface. A new quantitative tissue perfusion index (TPIDSPF) based on frequency domain analysis of the pulsatile blood flow waveform is defined to assess tissue ischemia status. Through a clinical study involving 66 subjects, including healthy individuals and diabetes patients with and without PAD, TPIDSPF demonstrated strong correlations of 0.720 with transcutaneous tissue partial oxygen pressure (TcPO2) and 0.652 with toe-brachial index (TBI). Moreover, among the three methods, TPIDSPF demonstrated the highest area under the curve for PAD diagnosis among diabetes patients, with a notable value of 0.941. The promising clinical results suggest that the proposed optical method has the potential to be an effective clinical tool for identifying PAD among the diabetic cohort.

5.
Opt Express ; 32(3): 3440-3450, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38297564

RESUMO

Surface enhanced Raman spectroscopy (SERS) is one of the most sensitive biosensing techniques that offers label free detection for a variety of applications. Generally, SERS spectroscopy is performed on nano-functionalized planar substrates with plasmonic structures or colloidal nanoparticles. Recently, photonic crystal fibers (PCFs) have gained great interest for SERS based bio sensing applications due to the immense advantages such as improved sensitivity, flexibility and remote sensing capability that it offers compared to the planar substrates. However, the use of PCF based biosensors demand the alignment of it under a microscope, which can affect the reliability of SERS measurements and could be restrictive for practical end use applications. Herein, we aim to develop a tapered suspended core PCF fiber (Tapered-SuC-PCF) that represents an improvement in coupling efficiency and measurement reliability as well as it opens the way to the development of an easy-to-use bio-sensing probes with a plug and play option with conventional Raman spectrometers. We have fabricated several samples of the optimized tapered-SuC-PCF and demonstrated its superior SERS performance compared to standard SuC-PCF fibers with 2 µm core diameter. An excellent SERS measurement reliability is demonstrated using such a fiber in a plug and play type system demonstrating its versatility for practical end use applications.

6.
Sci Rep ; 14(1): 1085, 2024 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-38212347

RESUMO

The genitourinary symptom of menopause (GSM) affects up to 65% of women, resulting in symptoms such as vulvovaginal dryness, discomfort, and dysuria, which significantly impacts quality of life. The current assessment methods rely on subjective questionnaires that can be influenced by individual differences, as well as invasive measurements that are time-consuming and not easily accessible. In this study, we explore the potential of a non-invasive and objective assessment tool called diffuse reflectance spectroscopy and imaging (DRSI) to evaluate tissue chromophores, including water, lipid, oxyhemoglobin, and deoxyhemoglobin. These measurements provide information about moisture content, lipid levels, oxygen saturation, and blood fraction, which can serve as surrogate markers for genital estrogen levels. Our findings reveal distinct differences in these chromophores among pre, peri, and postmenopausal subjects. By using lipid and blood fraction tissue chromophores in a K-Nearest Neighbour classifier model, we achieved a prediction accuracy of 65% compared to vaginal maturation index (VMI) that is clinically used to assess estrogen-related hormonal changes. When age was included as the third feature, the accuracy increased to 78%. We believe that by refining the study protocol and configuring the fiber probe to examine tissue chromophores both in the superficial vulva skin for epidermal water content and the deeper layers, DRSI has the potential to provide objective diagnosis and aid in monitoring the treatment outcome of GSM.


Assuntos
Menopausa , Qualidade de Vida , Feminino , Humanos , Projetos Piloto , Vagina/patologia , Análise Espectral , Estrogênios , Água , Lipídeos , Atrofia/patologia
7.
RSC Adv ; 14(5): 3599-3610, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38264270

RESUMO

Breast cancer is a prevalent form of cancer worldwide, and the current standard screening method, mammography, often requires invasive biopsy procedures for further assessment. Recent research has explored microRNAs (miRNAs) in circulating blood as potential biomarkers for early breast cancer diagnosis. In this study, we employed a multi-modal spectroscopy approach, combining attenuated total reflection Fourier transform infrared (ATR-FTIR) and surface-enhanced Raman scattering (SERS) to comprehensively characterize the full-spectrum fingerprints of RNA biomarkers in the blood serum of breast cancer patients. The sensitivity of conventional FTIR and Raman spectroscopy was enhanced by ATR-FTIR and SERS through the utilization of a diamond ATR crystal and silver-coated silicon nanopillars, respectively. Moreover, a wider measurement wavelength range was achieved with the multi-modal approach than with a single spectroscopic method alone. We have shown the results on 91 clinical samples, which comprised 44 malignant and 47 benign cases. Principal component analysis (PCA) was performed on the ATR-FTIR, SERS, and multi-modal data. From the peak analysis, we gained insights into biomolecular absorption and scattering-related features, which aid in the differentiation of malignant and benign samples. Applying 32 machine learning algorithms to the PCA results, we identified key molecular fingerprints and demonstrated that the multi-modal approach outperforms individual techniques, achieving higher average validation accuracy (95.1%), blind test accuracy (91.6%), specificity (94.7%), sensitivity (95.5%), and F-score (94.8%). The support vector machine (SVM) model showed the best area under the curve (AUC) characterization value of 0.9979, indicating excellent performance. These findings highlight the potential of the multi-modal spectroscopy approach as an accurate, reliable, and rapid method for distinguishing between malignant and benign breast tumors in women. Such a label-free approach holds promise for improving early breast cancer diagnosis and patient outcomes.

8.
IEEE Trans Biomed Eng ; 71(2): 712-716, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37531313

RESUMO

Lewis hunting reaction refers to the alternating cold-induced vasoconstriction and dilation in extremities, whose underlying mechanism is complex. While numerous studies reported this intriguing phenomenon by measuring cutaneous temperature fluctuation under cold exposure, few of them tracked peripheral vascular responses in real-time, lacking a non-invasive and quantitative imaging tool. To better monitor hunting reaction and diagnose relevant diseases, we developed a hybrid photoacoustic ultrasound (PAUS) tomography system to monitor finger vessels' dynamic response to cold, together with simultaneous temperature measurement. We also came out a standard workflow for image analysis with self-defined indices. In the small cohort observational study, vascular changes in the first cycle of hunting reaction were successfully captured by the image series and quantified. Time difference between vasodilation and temperature recovery was noticed and reported for the first time, thanks to the unique capability of the PAUS imaging system in real-time and continuous vascular monitoring. The developed imaging system and indices enabled more objective and quantitative monitoring of peripheral vascular activities, indicating its great potential in numerous clinical applications.


Assuntos
Vasoconstrição , Vasodilatação , Humanos , Vasoconstrição/fisiologia , Temperatura Baixa , Temperatura Corporal , Ultrassonografia
9.
IEEE Trans Med Imaging ; 43(5): 1740-1752, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38157469

RESUMO

Minimally-invasive and biocompatible implantable bioelectronic circuits are used for long-term monitoring of physiological processes in the body. However, there is a lack of methods that can cheaply and conveniently image the device within the body while simultaneously extracting sensor information. Magnetic Particle Imaging (MPI) with zero background signal, high contrast, and high sensitivity with quantitative images is ideal for this challenge because the magnetic signal is not absorbed with increasing tissue depth and incurs no radiation dose. We show how to easily modify common implantable devices to be imaged by MPI by encapsulating and magnetically-coupling magnetic nanoparticles (SPIOs) to the device circuit. These modified implantable devices not only provide spatial information via MPI, but also couple to our handheld MPI reader to transmit sensor information by modulating harmonic signals from magnetic nanoparticles via switching or frequency-shifting with resistive or capacitive sensors. This paper provides proof-of-concept of an optimized MPI imaging technique for implantable devices to extract spatial information as well as other information transmitted by the implanted circuit (such as biosensing) via encoding in the magnetic particle spectrum. The 4D images present 3D position and a changing color tone in response to a variable biometric. Biophysical sensing via bioelectronic circuits that take advantage of the unique imaging properties of MPI may enable a wide range of minimally invasive applications in biomedicine and diagnosis.


Assuntos
Nanopartículas de Magnetita , Próteses e Implantes , Nanopartículas de Magnetita/química , Imagens de Fantasmas , Técnicas Biossensoriais/métodos , Técnicas Biossensoriais/instrumentação , Desenho de Equipamento , Humanos
10.
Sci Rep ; 13(1): 22261, 2023 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-38097653

RESUMO

Traditional methods for assessing plant health often lack the necessary attributes for continuous and non-destructive monitoring. In this pilot study, we present a novel technique utilizing a customized fiber optic probe based on attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) with a contact force control unit for non-invasive and continuous plant health monitoring. We also developed a normalized difference mid-infrared reflectance index through statistical analysis of spectral features, enabling differentiation of drought and age conditions in plants. Our research aims to characterize phytochemicals and plant endogenous status optically, addressing the need for improved analytical measurement methods for in situ plant health assessment. The probe configuration was optimized with a triple-loop tip and a 3 N contact force, allowing sensitive measurements while minimizing leaf damage. By combining polycrystalline and chalcogenide fiber probes, a comprehensive wavenumber range analysis (4000-900 cm-1) was achieved. Results revealed significant variations in phytochemical composition among plant species, for example, red spinach with the highest polyphenolic content and green kale with the highest lignin content. Petioles displayed higher lignin and cellulose absorbance values compared to veins. The technique effectively monitored drought stress on potted green bok choy plants in situ, facilitating the quantification of changes in water content, antioxidant activity, lignin, and cellulose levels. This research represents the first demonstration of the potential of fiber optic ATR-FTIR probes for non-invasive and rapid plant health measurements, providing insights into plant health and advancements in quantitative monitoring for indoor farming practices, bioanalytical chemistry, and environmental sciences.


Assuntos
Brassica , Lignina , Projetos Piloto , Celulose , Espectroscopia de Infravermelho com Transformada de Fourier/métodos
11.
Nat Commun ; 14(1): 7085, 2023 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-37925522

RESUMO

Surface enhanced Resonance Raman spectroscopy (SERRS) is a powerful technique for enhancing Raman spectra by matching the laser excitation wavelength with the plasmonic resonance and the absorption peak of biomolecules. Here, we propose a tunable Tamm plasmon polariton (TPP) cavity based on a metal on distributed Bragg reflector (DBR) as a scalable sensing platform for SERRS. We develop a gold film-coated ultralow-loss phase change material (Sb2S3) based DBR, which exhibits continuously tunable TPP resonances in the optical wavelengths. We demonstrate SERRS by matching the TPP resonance with the absorption peak of the chromophore molecule at 785 nm wavelength. We use this platform to detect cardiac Troponin I protein (cTnI), a biomarker for early diagnosis of cardiovascular disease, achieving a detection limit of 380 fM. This scalable substrate shows great promise as a next-generation tunable biosensing platform for detecting disease biomarkers in body fluids for routine real-time clinical diagnosis.


Assuntos
Ouro , Análise Espectral Raman , Ouro/química , Ressonância de Plasmônio de Superfície/métodos
12.
J Biophotonics ; 16(12): e202300191, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37560963

RESUMO

A handheld non-invasive confocal Raman system (CRS) was used to evaluate the differences in skin biochemicals between atopic dermatitis (AD) and psoriasis, which are inflammatory skin conditions. Raman spectral measurements in the fingerprint and high wavenumber region were acquired using a portable in-house CRS system with excitation lasers operating at 671 and 785 nm. It was deduced that relative amount of water decreases in the following sequence of skin: healthy, psoriasis and AD. Moreover, differential trends were observed for the subclasses of ceramides such that ceramide 3 is lower in the lesional AD and psoriasis skin as compared to healthy, while ceramide 2 showed a contrasting trend of decrease in lesional AD and increase in lesional psoriasis as opposed to healthy skin. Amount of cholesterol was significantly higher in lesional psoriasis as compared to lesional AD and healthy skin. These differences can aid in an objective classification of the skin conditions and in the formulation of new disease-specific topical treatments.


Assuntos
Dermatite Atópica , Psoríase , Humanos , Análise Espectral Raman , Ceramidas
13.
J Biophotonics ; 16(11): e202300199, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37496212

RESUMO

Breast cancer diagnosis is crucial for timely treatment and improved outcomes. This paper proposes a novel approach for rapid breast cancer diagnosis using optical fiber probe-based attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy from 750 to 4000 cm-1 . The technique enables direct analysis of tissue samples, eliminating the need for microtome sectioning and staining, thus saving time and resources. By capturing molecular fingerprint information, various machine-learning models were used to analyze the spectroscopic data to classify cancerous and non-cancerous tissues accurately. Comparing deparaffinized and paraffinized samples reveals the impact of sample preparation and experimental methods. The study demonstrates a strong correlation between the cancerous nature of a sample and its ATR-FTIR spectrum, suggesting its potential for breast cancer diagnosis (sensitivity of 74.2% and specificity of 78.3%). The proposed approach holds promise for integration into clinical operations, providing a rapid method for preliminary breast cancer diagnosis.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/diagnóstico , Projetos Piloto , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Tecnologia de Fibra Óptica , Fibras Ópticas , Proteínas Mutadas de Ataxia Telangiectasia
14.
Plant Phenomics ; 5: 0060, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37383729

RESUMO

Leaf color patterns vary depending on leaf age, pathogen infection, and environmental and nutritional stresses; thus, they are widely used to diagnose plant health statuses in agricultural fields. The visible-near infrared-shortwave infrared (VIS-NIR-SWIR) sensor measures the leaf color pattern from a wide spectral range with high spectral resolution. However, spectral information has only been employed to understand general plant health statuses (e.g., vegetation index) or phytopigment contents, rather than pinpointing defects of specific metabolic or signaling pathways in plants. Here, we report feature engineering and machine learning methods that utilize VIS-NIR-SWIR leaf reflectance for robust plant health diagnostics, pinpointing physiological alterations associated with the stress hormone, abscisic acid (ABA). Leaf reflectance spectra of wild-type, ABA2-overexpression, and deficient plants were collected under watered and drought conditions. Drought- and ABA-associated normalized reflectance indices (NRIs) were screened from all possible pairs of wavelength bands. Drought associated NRIs showed only a partial overlap with those related to ABA deficiency, but more NRIs were associated with drought due to additional spectral changes within the NIR wavelength range. Interpretable support vector machine classifiers built with 20 NRIs predicted treatment or genotype groups with an accuracy greater than those with conventional vegetation indices. Major selected NRIs were independent from leaf water content and chlorophyll content, 2 well-characterized physiological changes under drought. The screening of NRIs, streamlined with the development of simple classifiers, serves as the most efficient means of detecting reflectance bands that are highly relevant to characteristics of interest.

15.
Sci Rep ; 13(1): 9524, 2023 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-37308523

RESUMO

Advanced precision agriculture requires the objective measurement of the structural and functional properties of plants. Biochemical profiles in leaves can differ depending on plant growing conditions. By quantitatively detecting these changes, farm production processes can be optimized to achieve high-yield, high-quality, and nutrient dense agricultural products. To enable the rapid and non-destructive detection on site, this study demonstrates the development of a new custom-designed portable handheld Vis-NIR spectrometer that collects leaf reflectance spectra, wirelessly transfers the spectral data through Bluetooth, and provides both raw spectral data and processed information. The spectrometer has two preprogramed methods: anthocyanin and chlorophyll quantification. Anthocyanin content of red and green lettuce estimated with the new spectrometer showed an excellent correlation coefficient of 0.84 with those determined by a destructive gold standard biochemical method. The differences in chlorophyll content were measured using leaf senescence as a case study. Chlorophyll Index calculated with the handheld spectrometer gradually decreased with leaf age as chlorophyll degrades during the process of senescence. The estimated chlorophyll values were highly correlated with those obtained from a commercial fluorescence-based chlorophyll meter with a correlation coefficient of 0.77. The developed portable handheld Vis-NIR spectrometer could be a simple, cost-effective, and easy to operate tool that can be used to non-invasively monitor plant pigment and nutrient content efficiently.


Assuntos
Antocianinas , Nutrientes , Agricultura , Clorofila , Cultura
16.
Biosensors (Basel) ; 13(5)2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37232918

RESUMO

Molecular vibrations play a crucial role in physical chemistry and biochemistry, and Raman and infrared spectroscopy are the two most used techniques for vibrational spectroscopy. These techniques provide unique fingerprints of the molecules in a sample, which can be used to identify the chemical bonds, functional groups, and structures of the molecules. In this review article, recent research and development activities for molecular fingerprint detection using Raman and infrared spectroscopy are discussed, with a focus on identifying specific biomolecules and studying the chemical composition of biological samples for cancer diagnosis applications. The working principle and instrumentation of each technique are also discussed for a better understanding of the analytical versatility of vibrational spectroscopy. Raman spectroscopy is an invaluable tool for studying molecules and their interactions, and its use is likely to continue to grow in the future. Research has demonstrated that Raman spectroscopy is capable of accurately diagnosing various types of cancer, making it a valuable alternative to traditional diagnostic methods such as endoscopy. Infrared spectroscopy can provide complementary information to Raman spectroscopy and detect a wide range of biomolecules at low concentrations, even in complex biological samples. The article concludes with a comparison of the techniques and insights into future directions.


Assuntos
Neoplasias , Análise Espectral Raman , Humanos , Análise Espectral Raman/métodos , Espectrofotometria Infravermelho , Neoplasias/diagnóstico , Físico-Química
17.
Nanoscale ; 15(23): 10057-10066, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37249020

RESUMO

Breast cancer is the most prevalent cancer globally. Early detection is crucial and can be achieved by detecting cancer biomarkers in blood, such as circulating miRNAs (microRNAs). In this study, we present a label-free detection method based on broadband multi-resonant infrared metasurface for surface-enhanced infrared absorption (SEIRA) spectroscopy to detect miRNAs. The SEIRA resonances were optimized to match the miRNA biomarker fingerprint regions in the range of 800 to 2000 cm-1 and 2800 to 3500 cm-1, resulting in a simulated resonance enhancement of up to 103 times. Nine patient samples (six cancerous and three non-cancerous) were measured using SEIRA multi-well sensor chips. A novel analysis method, SEIRA-AR, was also developed to benchmark the results against industry standards, such as quantitative reverse transcription polymerase chain reaction (RT-qPCR) and next-generation sequencing (NGS). Our results showed an excellent linear correlation with a Pearson's r value of up to 0.99 and an R Squared value of up to 0.98. This study represents the first use of a SEIRA sensor for biomarker detection on clinical breast cancer samples and introduces an analysis method that produces results comparable to industry standards. Our findings pave the way for routine cancer diagnosis in the future. Additionally, the method discussed can be generalized to other biosensing activities involving two-step binding processes with complementary molecule-capturing agents.


Assuntos
Neoplasias da Mama , MicroRNA Circulante , MicroRNAs , Humanos , Feminino , MicroRNAs/análise , Neoplasias da Mama/genética , Detecção Precoce de Câncer , Biomarcadores Tumorais
18.
Anal Chem ; 95(12): 5240-5247, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36930570

RESUMO

Confocal Raman spectroscopy (CRS) is a powerful tool that has been widely used for biological tissue analysis because of its noninvasive nature, high specificity, and rich biochemical information. However, current commercial CRS systems suffer from limited detection regions (450-1750 cm-1), bulky sizes, nonflexibilities, slow acquisitions by consecutive excitations, and high costs if using a Fourier transform (FT) Raman spectroscopy with an InGaAs detector, which impede their adoption in clinics. In this study, we developed a portable CRS system with a simultaneous dual-wavelength source and a miniaturized handheld probe (120 mm × 60 mm × 50 mm) that can acquire spectra in both fingerprint (FP, 450-1750 cm-1) and high wavenumber (HW, 2800-3800 cm-1) regions simultaneously. An innovative design combining 671 and 785 nm lasers for simultaneous excitation through a compact and high-efficiency (>90%) wavelength combiner was implemented. Moreover, to decouple the fused FP and HW spectra, a first-of-its-kind precise Raman spectra separation algorithm (PRSSA) was developed based on the maximum a posteriori probability (MAP) estimate. The accuracy of spectra separation was greater than 99%, demonstrated in both phantom experiments and in vivo human skin measurements. The total data acquisition time was reduced by greater than 50% compared to other CRS systems. The results proved our proposed CRS system and PRSSA's superior capability in fast and ultrawideband spectra acquisition will significantly improve the integration of CRS in the clinical workflow.


Assuntos
Algoritmos , Análise Espectral Raman , Humanos , Análise Espectral Raman/métodos , Imagens de Fantasmas , Custos e Análise de Custo
19.
Sensors (Basel) ; 23(1)2023 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-36617107

RESUMO

Photoacoustic tomography (PAT) is increasingly being used for high-resolution biological imaging at depth. Signal-to-noise ratios and resolution are the main factors that determine image quality. Various reconstruction algorithms have been proposed and applied to reduce noise and enhance resolution, but the efficacy of signal preprocessing methods which also affect image quality, are seldom discussed. We, therefore, compared common preprocessing techniques, namely bandpass filters, wavelet denoising, empirical mode decomposition, and singular value decomposition. Each was compared with and without accounting for sensor directivity. The denoising performance was evaluated with the contrast-to-noise ratio (CNR), and the resolution was calculated as the full width at half maximum (FWHM) in both the lateral and axial directions. In the phantom experiment, counting in directivity was found to significantly reduce noise, outperforming other methods. Irrespective of directivity, the best performing methods for denoising were bandpass, unfiltered, SVD, wavelet, and EMD, in that order. Only bandpass filtering consistently yielded improvements. Significant improvements in the lateral resolution were observed using directivity in two out of three acquisitions. This study investigated the advantages and disadvantages of different preprocessing methods and may help to determine better practices in PAT reconstruction.


Assuntos
Algoritmos , Tomografia Computadorizada por Raios X , Tomografia Computadorizada por Raios X/métodos , Razão Sinal-Ruído , Imagens de Fantasmas , Processamento de Imagem Assistida por Computador/métodos
20.
Biosensors (Basel) ; 12(11)2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36354448

RESUMO

More than half of all pleural effusions are due to malignancy of which lung cancer is the main cause. Pleural effusions can complicate the course of pneumonia, pulmonary tuberculosis, or underlying systemic disease. We explore the application of label-free surface-enhanced Raman spectroscopy (SERS) as a point of care (POC) diagnostic tool to identify if pleural effusions are due to lung cancer or to other causes (controls). Lung cancer samples showed specific SERS spectral signatures such as the position and intensity of the Raman band in different wave number region using a novel silver coated silicon nanopillar (SCSNP) as a SERS substrate. We report a classification accuracy of 85% along with a sensitivity and specificity of 87% and 83%, respectively, for the detection of lung cancer over control pleural fluid samples with a receiver operating characteristics (ROC) area under curve value of 0.93 using a PLS-DA binary classifier to distinguish between lung cancer over control subjects. We have also evaluated discriminative wavenumber bands responsible for the distinction between the two classes with the help of a variable importance in projection (VIP) score. We found that our label-free SERS platform was able to distinguish lung cancer from pleural effusions due to other causes (controls) with higher diagnostic accuracy.


Assuntos
Neoplasias Pulmonares , Derrame Pleural Maligno , Derrame Pleural , Humanos , Derrame Pleural Maligno/diagnóstico , Derrame Pleural Maligno/etiologia , Derrame Pleural Maligno/patologia , Neoplasias Pulmonares/complicações , Neoplasias Pulmonares/diagnóstico , Derrame Pleural/complicações , Derrame Pleural/diagnóstico , Curva ROC , Aprendizado de Máquina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...