Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Phys Med Biol ; 69(13)2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38774985

RESUMO

Objective.This work investigates the use of passive luminescence detectors to determine different types of averaged linear energy transfer (LET-) for the energies relevant to proton therapy. The experimental results are compared to reference values obtained from Monte Carlo simulations.Approach.Optically stimulated luminescence detectors (OSLDs), fluorescent nuclear track detectors (FNTDs), and two different groups of thermoluminescence detectors (TLDs) were irradiated at four different radiation qualities. For each irradiation, the fluence- (LET-f) and dose-averaged LET (LET-d) were determined. For both quantities, two sub-types of averages were calculated, either considering the contributions from primary and secondary protons or from all protons and heavier, charged particles. Both simulated and experimental data were used in combination with a phenomenological model to estimate the relative biological effectiveness (RBE).Main results.All types ofLET-could be assessed with the luminescence detectors. The experimental determination ofLET-fis in agreement with reference data obtained from simulations across all measurement techniques and types of averaging. On the other hand,LET-dcan present challenges as a radiation quality metric to describe the detector response in mixed particle fields. However, excluding secondaries heavier than protons from theLET-dcalculation, as their contribution to the luminescence is suppressed by ionization quenching, leads to equal accuracy betweenLET-fandLET-d. Assessment of RBE through the experimentally determinedLET-dvalues agrees with independently acquired reference values, indicating that the investigated detectors can determineLET-with sufficient accuracy for proton therapy.Significance.OSLDs, TLDs, and FNTDs can be used to determineLET-and RBE in proton therapy. With the capability to determine dose through ionization quenching corrections derived fromLET-, OSLDs and TLDs can simultaneously ascertain dose,LET-, and RBE. This makes passive detectors appealing for measurements in phantoms to facilitate validation of clinical treatment plans or experiments related to proton therapy.


Assuntos
Transferência Linear de Energia , Método de Monte Carlo , Terapia com Prótons , Terapia com Prótons/instrumentação , Doses de Radiação , Eficiência Biológica Relativa
2.
Radiother Oncol ; 196: 110293, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38653379

RESUMO

The evidence for the value of particle therapy (PT) is still sparse. While randomized trials remain a cornerstone for robust comparisons with photon-based radiotherapy, data registries collecting real-world data can play a crucial role in building evidence for new developments. This Perspective describes how the European Particle Therapy Network (EPTN) is actively working on establishing a prospective data registry encompassing all patients undergoing PT in European centers. Several obstacles and hurdles are discussed, for instance harmonization of nomenclature and structure of technical and dosimetric data and data protection issues. A preferred approach is the adoption of a federated data registry model with transparent and agile governance to meet European requirements for data protection, transfer, and processing. Funding of the registry, especially for operation after the initial setup process, remains a major challenge.


Assuntos
Sistema de Registros , Humanos , Europa (Continente) , Estudos Prospectivos , Neoplasias/radioterapia , Terapia com Prótons
3.
Phys Med ; 118: 103301, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38290179

RESUMO

PURPOSE: The aim of this work is to investigate the feasibility of the Jagiellonian Positron Emission Tomography (J-PET) scanner for intra-treatment proton beam range monitoring. METHODS: The Monte Carlo simulation studies with GATE and PET image reconstruction with CASToR were performed in order to compare six J-PET scanner geometries. We simulated proton irradiation of a PMMA phantom with a Single Pencil Beam (SPB) and Spread-Out Bragg Peak (SOBP) of various ranges. The sensitivity and precision of each scanner were calculated, and considering the setup's cost-effectiveness, we indicated potentially optimal geometries for the J-PET scanner prototype dedicated to the proton beam range assessment. RESULTS: The investigations indicate that the double-layer cylindrical and triple-layer double-head configurations are the most promising for clinical application. We found that the scanner sensitivity is of the order of 10-5 coincidences per primary proton, while the precision of the range assessment for both SPB and SOBP irradiation plans was found below 1 mm. Among the scanners with the same number of detector modules, the best results are found for the triple-layer dual-head geometry. The results indicate that the double-layer cylindrical and triple-layer double-head configurations are the most promising for the clinical application, CONCLUSIONS:: We performed simulation studies demonstrating that the feasibility of the J-PET detector for PET-based proton beam therapy range monitoring is possible with reasonable sensitivity and precision enabling its pre-clinical tests in the clinical proton therapy environment. Considering the sensitivity, precision and cost-effectiveness, the double-layer cylindrical and triple-layer dual-head J-PET geometry configurations seem promising for future clinical application.


Assuntos
Terapia com Prótons , Prótons , Estudos de Viabilidade , Tomografia por Emissão de Pósitrons , Terapia com Prótons/métodos , Imagens de Fantasmas , Método de Monte Carlo
4.
Radiat Prot Dosimetry ; 199(15-16): 1937-1940, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37819291

RESUMO

The radioluminescence (RL) emitted by LiMgPO4 detector under proton beam irradiation was investigated in real time at the radiotherapy facility in the Institute of Nuclear Physics Polish Academy of Sciences in Krakow. The facility uses protons accelerated by the AIC-144 isochronous cyclotron up to the energy of 60 MeV. The measurements of RL were carried out using a remote optical fiber device with a luminophore detector and photomultiplier located at opposite ends of the optical fiber. A thin slice of LiMgPO4 doped with Tm (1.2 mol%) crystal was exposed to the proton beam. The tested detector allowed for the measurement of proton beam current, flux fluence and determination of proton beam time structure parameters. The investigation of LiMgPO4 crystal showed its high sensitivity, fast reaction time to irradiation and possibility of application as the detector for control of proton beam parameters.


Assuntos
Ciclotrons , Terapia com Prótons , Controle de Qualidade , Dosagem Radioterapêutica , Radioterapia , Ciclotrons/instrumentação , Ciclotrons/normas , Luminescência , Polônia , Terapia com Prótons/instrumentação , Terapia com Prótons/normas , Prótons , Radioatividade , Radioterapia/normas , Dosagem Radioterapêutica/normas , Metais Leves
5.
Radiat Prot Dosimetry ; 199(15-16): 1689-1695, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37819353

RESUMO

Following the publication of the joint The International Commissions on Radiation Units and Measurements (ICRU) and on Radiological Protection (ICRP) report on new operational quantities for radiation protection, the European Dosimetry Group (EURADOS) have carried out an initial evaluation. The EURADOS report analyses the impact that the new quantities will have on: radiation protection practice; calibration and reference fields; European and national regulation; international standards and, especially, dosemeter and instrument design. The task group included experienced scientists drawn from across the various EURADOS working groups.


Assuntos
Monitoramento de Radiação , Proteção Radiológica , Radiometria , Dosímetros de Radiação , Calibragem , Padrões de Referência , Doses de Radiação
6.
Phys Med Biol ; 2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37295440

RESUMO

OBJECTIVE: The Jagiellonian PET (J-PET) technology, based on plastic scintillators, has been proposed as a cost effective tool for detecting range deviations during proton therapy. This study investigates the feasibility of using J-PET for range monitoring by means of a detailed Monte Carlo simulation study of 95 patients who underwent proton therapy at the Cyclotron Centre Bronowice (CCB) in Krakow, Poland. Approach: Discrepancies between prescribed and delivered treatments were artificially introduced in the simulations by means of shifts in patient positioning and in the Hounsfield unit to the relative proton stopping power calibration curve. A dual-layer, cylindrical J-PET geometry was simulated in an in-room monitoring scenario and a triple-layer, dual-head geometry in an in-beam protocol. The distribution of range shifts in reconstructed PET activity was visualised in the beam's eye view. Linear prediction models were constructed from all patients in the cohort, using the mean shift in reconstructed PET activity as a predictor of the mean proton range deviation. Main results: Maps of deviations in the range of reconstructed PET distributions showed agreement with those of deviations in dose range in most patients. The linear prediction model showed a good fit, with coefficient of determination r^2 = 0.84 (in-room) and 0.75 (in-beam). Residual standard error was below 1 mm: 0.33 mm (in-room) and 0.23 mm (in-beam). Significance: The precision of the proposed prediction models shows the sensitivity of the proposed J-PET scanners to shifts in proton range for a wide range of clinical treatment plans. Furthermore, it motivates the use of such models as a tool for predicting proton range deviations and opens up new prospects for investigations into the use of intra-treatment PET images for predicting clinical metrics that aid in the assessment of the quality of delivered treatment. .

7.
Front Oncol ; 12: 903537, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36158693

RESUMO

Out-of-field patient doses in proton therapy are dominated by neutrons. Currently, they are not taken into account by treatment planning systems. There is an increasing need to include out-of-field doses in the dose calculation, especially when treating children, pregnant patients, and patients with implants. In response to this demand, this work presents the first steps towards a tool for the prediction of out-of-field neutron doses in pencil beam scanning proton therapy facilities. As a first step, a general Monte Carlo radiation transport model for simulation of out-of-field neutron doses was set up and successfully verified by comparison of simulated and measured ambient neutron dose equivalent and neutron fluence energy spectra around a solid water phantom irradiated with a variation of different treatment plan parameters. Simulations with the verified model enabled a detailed study of the variation of the neutron ambient dose equivalent with field size, range, modulation width, use of a range shifter, and position inside the treatment room. For future work, it is planned to use this verified model to simulate out-of-field neutron doses inside the phantom and to verify the simulation results by comparison with previous in-phantom measurement campaigns. Eventually, these verified simulations will be used to build a library and a corresponding tool to allow assessment of out-of-field neutron doses at pencil beam scanning proton therapy facilities.

8.
Radiat Prot Dosimetry ; 198(19): 1471-1475, 2022 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-36138419

RESUMO

The Maastro Proton Therapy Centre is the first European facility housing the Mevion S250i Hyperscan synchrocyclotron. The proximity of the accelerator to the patient, the presence of an active pencil beam delivery system downstream of a passive energy degrader and the pulsed structure of the beam make the Mevion stray neutron field unique amongst proton therapy facilities. This paper reviews the results of a rem-counter intercomparison experiment promoted by the European Radiation Dosimetry Group at Maastro and compares them with those at other proton therapy facilities. The Maastro neutron H*(10) in the room (100-200 µSv/Gy at about 2 m from the isocentre) is in line with accelerators using purely passive or wobbling beam delivery modalities, even though Maastro shows a dose gradient peaked near the accelerator. Unlike synchrotron- and cyclotron-based facilities, the pulsed beam at Maastro requires the employment of rem-counters specifically designed to withstand pulsed neutron fields.


Assuntos
Terapia com Prótons , Humanos , Terapia com Prótons/métodos , Doses de Radiação , Nêutrons , Radiometria/métodos , Ciclotrons , Dosagem Radioterapêutica
9.
Phys Med Biol ; 2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-36137551

RESUMO

OBJECTIVE: This paper reports on the implementation and shows examples of the use of the ProTheRaMon framework for simulating the delivery of proton therapy treatment plans and range monitoring using positron emission tomography (PET). ProTheRaMon offers complete processing of proton therapy treatment plans, patient CT geometries, and intra-treatment PET imaging, taking into account therapy and imaging coordinate systems and activity decay during the PET imaging protocol specific to a given proton therapy facility. We present the ProTheRaMon framework and illustrate its potential use case and data processing steps for a patient treated at the Cyclotron Centre Bronowice (CCB) proton therapy center in Krakow, Poland. APPROACH: The ProTheRaMon framework is based on GATE Monte Carlo software, the CASToR reconstruction package and in-house developed Python and bash scripts. The framework consists of five separated simulation and data processing steps, that can be further optimized according to the user's needs and specific settings of a given proton therapy facility and PET scanner design. MAIN RESULTS: ProTheRaMon is presented using example data from a patient treated at CCB and the J-PET scanner to demonstrate the application of the framework for proton therapy range monitoring. The output of each simulation and data processing stage is described and visualized. SIGNIFICANCE: We demonstrate that the ProTheRaMon simulation platform is a high-performance tool, capable of running on a computational cluster and suitable for multi-parameter studies, with databases consisting of large number of patients, as well as different PET scanner geometries and settings for range monitoring in a clinical environment. Due to its modular structure, the ProTheRaMon framework can be adjusted for different proton therapy centers and/or different PET detector geometries. It is available to the community via github.

10.
Front Oncol ; 12: 903706, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35912238

RESUMO

Purpose: This study aims to characterize the neutron radiation field inside a scanning proton therapy treatment room including the impact of different pediatric patient sizes. Materials and Methods: Working Group 9 of the European Radiation Dosimetry Group (EURADOS) has performed a comprehensive measurement campaign to measure neutron ambient dose equivalent, H*(10), at eight different positions around 1-, 5-, and 10-year-old pediatric anthropomorphic phantoms irradiated with a simulated brain tumor treatment. Several active detector systems were used. Results: The neutron dose mapping within the gantry room showed that H*(10) values significantly decreased with distance and angular deviation with respect to the beam axis. A maximum value of about 19.5 µSv/Gy was measured along the beam axis at 1 m from the isocenter for a 10-year-old pediatric phantom at 270° gantry angle. A minimum value of 0.1 µSv/Gy was measured at a distance of 2.25 m perpendicular to the beam axis for a 1-year-old pediatric phantom at 140° gantry angle.The H*(10) dependence on the size of the pediatric patient was observed. At 270° gantry position, the measured neutron H*(10) values for the 10-year-old pediatric phantom were up to 20% higher than those measured for the 5-year-old and up to 410% higher than for the 1-year-old phantom, respectively. Conclusions: Using active neutron detectors, secondary neutron mapping was performed to characterize the neutron field generated during proton therapy of pediatric patients. It is shown that the neutron ambient dose equivalent H*(10) significantly decreases with distance and angle with respect to the beam axis. It is reported that the total neutron exposure of a person staying at a position perpendicular to the beam axis at a distance greater than 2 m from the isocenter remains well below the dose limit of 1 mSv per year for the general public (recommended by the International Commission on Radiological Protection) during the entire treatment course with a target dose of up to 60 Gy. This comprehensive analysis is key for general neutron shielding issues, for example, the safe operation of anesthetic equipment. However, it also enables the evaluation of whether it is safe for parents to remain near their children during treatment to bring them comfort. Currently, radiation protection protocols prohibit the occupancy of the treatment room during beam delivery.

11.
Front Oncol ; 12: 904563, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35957900

RESUMO

Since 2010, EURADOS Working Group 9 (Radiation Dosimetry in Radiotherapy) has been involved in the investigation of secondary and scattered radiation doses in X-ray and proton therapy, especially in the case of pediatric patients. The main goal of this paper is to analyze and compare out-of-field neutron and non-neutron organ doses inside 5- and 10-year-old pediatric anthropomorphic phantoms for the treatment of a 5-cm-diameter brain tumor. Proton irradiations were carried out at the Cyclotron Centre Bronowice in IFJ PAN Krakow Poland using a pencil beam scanning technique (PBS) at a gantry with a dedicated scanning nozzle (IBA Proton Therapy System, Proteus 235). Thermoluminescent and radiophotoluminescent dosimeters were used for non-neutron dose measurements while secondary neutrons were measured with track-etched detectors. Out-of-field doses measured using intensity-modulated proton therapy (IMPT) were compared with previous measurements performed within a WG9 for three different photon radiotherapy techniques: 1) intensity-modulated radiation therapy (IMRT), 2) three-dimensional conformal radiation therapy (3D CDRT) performed on a Varian Clinac 2300 linear accelerator (LINAC) in the Centre of Oncology, Krakow, Poland, and 3) Gamma Knife surgery performed on the Leksell Gamma Knife (GK) at the University Hospital Centre Zagreb, Croatia. Phantoms and detectors used in experiments as well as the target location were the same for both photon and proton modalities. The total organ dose equivalent expressed as the sum of neutron and non-neutron components in IMPT was found to be significantly lower (two to three orders of magnitude) in comparison with the different photon radiotherapy techniques for the same delivered tumor dose. For IMPT, neutron doses are lower than non-neutron doses close to the target but become larger than non-neutron doses further away from the target. Results of WG9 studies have provided out-of-field dose levels required for an extensive set of radiotherapy techniques, including proton therapy, and involving a complete description of organ doses of pediatric patients. Such studies are needed for validating mathematical models and Monte Carlo simulation tools for out-of-field dosimetry which is essential for dedicated epidemiological studies which evaluate the risk of second cancers and other late effects for pediatric patients treated with radiotherapy.

12.
Radiat Oncol ; 17(1): 50, 2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-35264184

RESUMO

BACKGROUND: Variable relative biological effectiveness (vRBE) in proton therapy might significantly modify the prediction of RBE-weighted dose delivered to a patient during proton therapy. In this study we will present a method to quantify the biological range extension of the proton beam, which results from the application of vRBE approach in RBE-weighted dose calculation. METHODS AND MATERIALS: The treatment plans of 95 patients (brain and skull base patients) were used for RBE-weighted dose calculation with constant and the McNamara RBE model. For this purpose the Monte Carlo tool FRED was used. The RBE-weighted dose distributions were analysed using indices from dose-volume histograms. We used the volumes receiving at least 95% of the prescribed dose (V95) to estimate the biological range extension resulting from vRBE approach. RESULTS: The vRBE model shows higher median value of relative deposited dose and D95 in the planning target volume by around 1% for brain patients and 4% for skull base patients. The maximum doses in organs at risk calculated with vRBE was up to 14 Gy above dose limit. The mean biological range extension was greater than 0.4 cm. DISCUSSION: Our method of estimation of biological range extension is insensitive for dose inhomogeneities and can be easily used for different proton plans with intensity-modulated proton therapy (IMPT) optimization. Using volumes instead of dose profiles, which is the common method, is more universal. However it was tested only for IMPT plans on fields arranged around the tumor area. CONCLUSIONS: Adopting a vRBE model results in an increase in dose and an extension of the beam range, which is especially disadvantageous in cancers close to organs at risk. Our results support the need to re-optimization of proton treatment plans when considering vRBE.


Assuntos
Neoplasias Encefálicas/radioterapia , Neoplasias da Base do Crânio/radioterapia , Neoplasias Encefálicas/patologia , Feminino , Humanos , Masculino , Método de Monte Carlo , Estadiamento de Neoplasias , Órgãos em Risco , Polônia , Terapia com Prótons/métodos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Eficiência Biológica Relativa , Neoplasias da Base do Crânio/patologia , Tomografia Computadorizada por Raios X
13.
Phys Med Biol ; 2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35259730

RESUMO

Objective Proton therapy is gaining popularity because of the improved dose delivery over conventional radiation therapy. The secondary dose to healthy tissues is dominated by secondary neutrons. Commercial rem-counters are valuable instruments for the on-line assessment of neutron ambient dose equivalent (H*(10)). In general, however, a priori knowledge of the type of facility and of the radiation field is required for the proper choice of any survey meter. The novel Mevion S250i Hyperscan synchrocyclotron mounts the accelerator directly on the gantry. It provides a scanned 227 MeV proton beam, delivered in pulses with a pulse width of 10 µs at 750 Hz frequency, which is afterwards degraded in energy by a range shifter modulator system. This environment is particularly challenging for commercial rem-counters; therefore, we tested the reliability of some of the most widespread rem-counters to understand their limits in the Mevion S250i stray neutron field. Approach This work, promoted by the European Radiation Dosimetry Group (EURADOS), describes a rem-counter intercomparison at the Maastro Proton Therapy centre in the Netherlands, which houses the novel Mevion S250i Hyperscan system. Several rem-counters were employed in the intercomparison (LUPIN, LINUS, WENDI-II, LB6411, NM2B-458, NM2B-495Pb), which included simulation of a patient treatment protocol employing a water tank phantom. The outcomes of the experiment were compared with models and data from the literature. Main results We found that only the LUPIN allowed for a correct assessment of H*(10) within a 20% uncertainty. All other rem-counters underestimated the reference H*(10) by factors from 2 to more than 10, depending on the detector model and on the neutron dose per pulse. In pulsed fields, the neutron dose per pulse is a fundamental parameter, while the average neutron dose rate is a secondary quantity. An average 150-200 µSv/GyRBE neutron H*(10) at various positions around the phantom and at distances between 186 cm and 300 cm from it was measured per unit therapeutic dose delivered to the target. Significance Our results are partially in line with results obtained at similar Mevion facilities employing passive energy modulation. Comparisons with facilities employing active energy modulation confirmed that the neutron H*(10) can increase up to more than a factor of 10 when passive energy modulation is employed. The challenging environment of the Mevion stray neutron field requires the use of specific rem-counters sensitive to high-energy neutrons (up to a few hundred MeV) and specifically designed to withstand pulsed neutron fields.

14.
Med Phys ; 49(4): 2672-2683, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35090187

RESUMO

PURPOSE: Craniospinal irradiation (CSI) has greatly increased survival rates for patients with a diagnosis of medulloblastoma and other primitive neuroectodermal tumors. However, as it includes exposure of a large volume of healthy tissue to unwanted doses, there is a strong concern about the complications of the treatment, especially for the children. To estimate the risk of second cancers and other unwanted effects, out-of-field dose assessment is necessary. The purpose of this study is to evaluate and compare out-of-field doses in pediatric CSI treatment using conventional and advanced photon radiotherapy (RT) and advanced proton therapy. To our knowledge, it is the first such comparison based on in-phantom measurements. Additionally, for out-of-field doses during photon RT in this and other studies, comparisons were made using analytical modeling. METHODS: In order to describe the out-of-field doses absorbed in a pediatric patient during actual clinical treatment, an anthropomorphic phantom, which mimics the 10-year-old child, was used. Photon 3D-conformal RT (3D-CRT) and two advanced, highly conformal techniques: photon volumetric-modulated arc therapy (VMAT) and active pencil beam scanning (PBS) proton RT were used for CSI treatment. Radiophotoluminescent and poly-allyl-diglycol-carbonate nuclear track detectors were used for photon and neutron dosimetry in the phantom, respectively. Out-of-field doses from neutrons were expressed in terms of dose equivalent. A two-Gaussian model was implemented for out-of-field doses during photon RT. RESULTS: The mean VMAT photon doses per target dose to all organs in this study were under 50% of the target dose (i.e., <500 mGy/Gy), while the mean 3D-CRT photon dose to oesophagus, gall bladder, and thyroid, exceeded that value. However, for 3D-CRT, better sparing was achieved for eyes and lungs. The mean PBS photon doses for all organs were up to three orders of magnitude lower compared to VMAT and 3D-CRT and exceeded 10 mGy/Gy only for the oesophagus, intestine, and lungs. The mean neutron dose equivalent during PBS for eight organs of interest (thyroid, breasts, lungs, liver, stomach, gall bladder, bladder, prostate) ranged from 1.2 mSv/Gy for bladder to 23.1 mSv/Gy for breasts. Comparison of out-of-field doses in this and other phantom studies found in the literature showed that a simple and fast two-Gaussian model for out-of-field doses as a function of distance from the field edge can be applied in a CSI using photon RT techniques. CONCLUSIONS: PBS is the most promising technique for out-of-field dose reduction in comparison to photon techniques. Among photon techniques, VMAT is a preferred choice for most of out-of-field organs and especially for the thyroid, while doses for eyes, breasts, and lungs are lower for 3D-CRT. For organs outside the field edge, a simple analytical model can be helpful for clinicians involved in treatment planning using photon RT but also for retrospective data analysis for cancer risk estimates and epidemiology in general.


Assuntos
Neoplasias Cerebelares , Radiação Cranioespinal , Radioterapia Conformacional , Radioterapia de Intensidade Modulada , Neoplasias Cerebelares/radioterapia , Criança , Radiação Cranioespinal/efeitos adversos , Radiação Cranioespinal/métodos , Humanos , Masculino , Órgãos em Risco/efeitos da radiação , Prótons , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia Conformacional/métodos , Radioterapia de Intensidade Modulada/efeitos adversos , Radioterapia de Intensidade Modulada/métodos , Estudos Retrospectivos
15.
Phys Med Biol ; 67(1)2022 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-34933289

RESUMO

Objective. Treatment planning based on computer simulations wasproposed to account for the increased relative biological effectiveness (RBE) of proton radiotherapy beams near to the edges of the irradiated volume. Since silicon detectors could be used to validate the results of these simulations, it is important to explore the limitations of this comparison.Approach. Microdosimetric measurements with a MicroPlus Bridge V2 silicon detector (thickness = 10µm) were performed along the Bragg peak of a clinical proton beam. The lineal energy distributions, the dose-mean values, and the RBE calculated with a biological weighting function were compared with PHITS simulations (microdosimetric target = 1µm water sphere), and published clonogenic survivalin vitroRBE data for the V79 cell line. The effect of the silicon-to-water conversion was also investigated by comparing three different methodologies (conversion based on a single value, novel bin-to-bin conversions based on SRIM and PSTAR).Main results. Mainly due to differences in the microdosimetric targets, the experimental dose-mean lineal energy and RBE values at the distal edge were respectively up to 53% and 28% lower than the simulated ones. Furthermore, the methodology chosen for the silicon-to-water conversion was proven to affect the dose-mean lineal energy and the RBE10up to 32% and 11% respectively. The best methodology to compensate for this underestimation was the bin-to-bin silicon-to-water conversion based on PSTAR.Significance. This work represents the first comparison between PHITS-simulated lineal energy distributions in water targets and corresponding experimental spectra measured with silicon detectors. Furthermore, the effect of the silicon-to-water conversion on the RBE was explored for the first time. The proposed methodology based on the PSTAR bin-to-bin conversion appears to provide superior results with respect to commonly used single scaling factors and is recommended for future studies.


Assuntos
Terapia com Prótons , Método de Monte Carlo , Terapia com Prótons/métodos , Prótons , Silício , Água
16.
Medicina (Kaunas) ; 57(11)2021 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-34833432

RESUMO

Breast implantation (BI) is the most common plastic surgery worldwide performed among women. Generally, BI is performed both in aesthetic and oncoplastic procedures. Recently, the prevalence of breast implant-associated anaplastic large cell lymphoma (BIA-ALCL) or breast implant illness (BII) has aroused concerns. As a result, several countries, like Australia, Korea or the United Kingdom, introduced national registries dedicated to the safety and quality of BI surgeries. This narrative review aimed to focus on the clinical challenges, management and the current state of knowledge of BI. Both short and long-term outcomes of BI are determined by various alternatives and differences, which surgeons must consider during the planning and performing breast augmentation along with further complications or risk of reoperation. Proper preoperative decisions and aspects of surgical technique emerged to be equally important. The number of performed breast reconstructions is increasing, providing the finest aesthetic results and improving patient's quality of life. Choice of prosthesis varies according to individual preferences and anatomical variables. A newly diagnosed cases of BIA-ALCL with lacking data on prevention, diagnosis, and treatment are placing it as a compelling medical challenge. Similarly, BII remains one of the most controversial subjects in reconstructive breast surgery due to unspecified diagnostic procedures, and recommendations.


Assuntos
Implante Mamário , Implantes de Mama , Neoplasias da Mama , Linfoma Anaplásico de Células Grandes , Mamoplastia , Implante Mamário/efeitos adversos , Implantes de Mama/efeitos adversos , Neoplasias da Mama/epidemiologia , Neoplasias da Mama/etiologia , Neoplasias da Mama/cirurgia , Feminino , Humanos , Linfoma Anaplásico de Células Grandes/cirurgia , Mamoplastia/efeitos adversos , Qualidade de Vida
17.
Radiother Oncol ; 163: 143-149, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34461183

RESUMO

PURPOSE: We investigated the relationship between RBE-weighted dose (DRBE) calculated with constant (cRBE) and variable RBE (vRBE), dose-averaged linear energy transfer (LETd) and the risk of radiographic changes in skull base patients treated with protons. METHODS: Clinical treatment plans of 45 patients were recalculated with Monte Carlo tool FRED. Radiographic changes (i.e. edema and/or necrosis) were identified by MRI. Dosimetric parameters for cRBE and vRBE were computed. Biological margin extension and voxel-based analysis were employed looking for association of DRBE(vRBE) and LETd with brain edema and/or necrosis. RESULTS: When using vRBE, Dmax in the brain was above the highest dose limits for 38% of patients, while such limit was never exceeded assuming cRBE. Similar values of Dmax were observed in necrotic regions, brain and temporal lobes. Most of the brain necrosis was in proximity to the PTV. The voxel-based analysis did not show evidence of an association with high LETd values. CONCLUSIONS: When looking at standard dosimetric parameters, the higher dose associated with vRBE seems to be responsible for an enhanced risk of radiographic changes. However, as revealed by a voxel-based analysis, the large inter-patient variability hinders the identification of a clear effect for high LETd.


Assuntos
Terapia com Prótons , Neoplasias da Base do Crânio , Encéfalo/diagnóstico por imagem , Humanos , Método de Monte Carlo , Necrose/etiologia , Terapia com Prótons/efeitos adversos , Planejamento da Radioterapia Assistida por Computador , Eficiência Biológica Relativa , Neoplasias da Base do Crânio/diagnóstico por imagem , Neoplasias da Base do Crânio/radioterapia
18.
Int J Radiat Biol ; 97(4): 541-552, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33395328

RESUMO

PURPOSE: Uncertainties regarding the magnitude of health effects following exposure to low doses of ionizing radiation remain a matter of concern both for professionals and for the public. There is consensus within the international radiation research community that more research is required on biological effects of radiation doses below 100 mGy applied at low dose rates. Moreover, there is a demand for increasing education and training of future radiation researchers and regulators. Research, education and training is primarily carried out at universities but university-based radiation research is often hampered by limited access to radiation sources. The aim of the present report is to describe small and cost-effective low activity gamma and alpha sources that can easily be installed and used in university laboratories. METHODS AND RESULTS: A gamma radiation source was made from an euxenite-(Y) rock (Y,Ca,Ce,U,Th)(Nb,Ta,Ti)2O6) that was found in an abandoned mine in Sweden. It allows exposing cells grown in culture dishes to radiation at a dose rate of 50 µGy/h and lower. Three alpha sources were custom-made and yield a dose rate of 1 mGy/h each. The construction, dosimetry and cellular effects of the sources are described. CONCLUSIONS: We hope that the report will stimulate research and training activities in the low dose field by facilitating access to radiation sources.


Assuntos
Partículas alfa/efeitos adversos , Raios gama/efeitos adversos , Doses de Radiação , Proteção Radiológica , Radiobiologia/métodos , Incerteza
19.
Phys Med Biol ; 65(23): 235010, 2020 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-33274727

RESUMO

An improved biological weighting function (IBWF) is proposed to phenomenologically relate microdosimetric lineal energy probability density distributions with the relative biological effectiveness (RBE) for the in vitro clonogenic cell survival (surviving fraction = 10%) of the most commonly used mammalian cell line, i.e. the Chinese hamster lung fibroblasts (V79). The IBWF, intended as a simple and robust tool for a fast RBE assessment to compare different exposure conditions in particle therapy beams, was determined through an iterative global-fitting process aimed to minimize the average relative deviation between RBE calculations and literature in vitro data in case of exposure to various types of ions from 1H to 238U. By using a single particle- and energy- independent function, it was possible to establish an univocal correlation between lineal energy and clonogenic cell survival for particles spanning over an unrestricted linear energy transfer range of almost five orders of magnitude (0.2 keV µm-1 to 15 000 keV µm-1 in liquid water). The average deviation between IBWF-derived RBE values and the published in vitro data was ∼14%. The IBWF results were also compared with corresponding calculations (in vitro RBE10 for the V79 cell line) performed using the modified microdosimetric kinetic model (modified MKM). Furthermore, RBE values computed with the reference biological weighting function (BWF) for the in vivo early intestine tolerance in mice were included for comparison and to further explore potential correlations between the BWF results and the in vitro RBE as reported in previous studies. The results suggest that the modified MKM possess limitations in reproducing the experimental in vitro RBE10 for the V79 cell line in case of ions heavier than 20Ne. Furthermore, due to the different modelled endpoint, marked deviations were found between the RBE values assessed using the reference BWF and the IBWF for ions heavier than 2H. Finally, the IBWF was unchangingly applied to calculate RBE values by processing lineal energy density distributions experimentally measured with eight different microdosimeters in 19 1H and 12C beams at ten different facilities (eight clinical and two research ones). Despite the differences between the detectors, irradiation facilities, beam profiles (pristine or spread out Bragg peak), maximum beam energy, beam delivery (passive or active scanning), energy degradation system (water, PMMA, polyamide or low-density polyethylene), the obtained IBWF-based RBE trends were found to be in good agreement with the corresponding ones in case of computer-simulated microdosimetric spectra (average relative deviation equal to 0.8% and 5.7% for 1H and 12C ions respectively).


Assuntos
Radiometria/métodos , Eficiência Biológica Relativa , Animais , Linhagem Celular , Sobrevivência Celular/efeitos da radiação , Cricetinae , Relação Dose-Resposta à Radiação , Cinética , Transferência Linear de Energia , Camundongos , Modelos Biológicos
20.
Int J Mol Sci ; 21(23)2020 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-33260340

RESUMO

Herein, we propose newly designed and synthesized gold nanopeanuts (Au NPes) as supports for cisplatin (cPt) immobilization, dedicated to combined glioblastoma nano-chemo-radiotherapy. Au NPes offer a large active surface, which can be used for drugs immobilization. Transmission electron microscopy (TEM) revealed that the size of the synthesized Au NPes along the longitudinal axis is ~60 nm, while along the transverse axis ~20 nm. Raman, thermogravimetric analysis (TGA) and differential scanning calorimetry (DCS) measurements showed, that the created nanosystem is stable up to a temperature of 110 °C. MTT assay revealed, that the highest cell mortality was observed for cell lines subjected to nano-chemo-radiotherapy (20-55%). Hence, Au NPes with immobilized cPt (cPt@AuNPes) are a promising nanosystem to improve the therapeutic efficiency of combined nano-chemo-radiotherapy.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/radioterapia , Cisplatino/uso terapêutico , Glioblastoma/tratamento farmacológico , Glioblastoma/radioterapia , Ouro/química , Nanopartículas Metálicas/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cisplatino/farmacologia , Glioblastoma/patologia , Humanos , Nanopartículas Metálicas/ultraestrutura , Análise Espectral Raman
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...