Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Epilepsia ; 64(10): 2827-2840, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37543852

RESUMO

OBJECTIVE: Posttranscriptional mechanisms are increasingly recognized as important contributors to the formation of hyperexcitable networks in epilepsy. Messenger RNA (mRNA) polyadenylation is a key regulatory mechanism governing protein expression by enhancing mRNA stability and translation. Previous studies have shown large-scale changes in mRNA polyadenylation in the hippocampus of mice during epilepsy development. The cytoplasmic polyadenylation element-binding protein CPEB4 was found to drive epilepsy-induced poly(A) tail changes, and mice lacking CPEB4 develop a more severe seizure and epilepsy phenotype. The mechanisms controlling CPEB4 function and the downstream pathways that influence the recurrence of spontaneous seizures in epilepsy remain poorly understood. METHODS: Status epilepticus was induced in wild-type and CPEB4-deficient male mice via an intra-amygdala microinjection of kainic acid. CLOCK binding to the CPEB4 promoter was analyzed via chromatin immunoprecipitation assay and melatonin levels via high-performance liquid chromatography in plasma. RESULTS: Here, we show increased binding of CLOCK to recognition sites in the CPEB4 promoter region during status epilepticus in mice and increased Cpeb4 mRNA levels in N2A cells overexpressing CLOCK. Bioinformatic analysis of CPEB4-dependent genes undergoing changes in their poly(A) tail during epilepsy found that genes involved in the regulation of circadian rhythms are particularly enriched. Clock transcripts displayed a longer poly(A) tail length in the hippocampus of mice post-status epilepticus and during epilepsy. Moreover, CLOCK expression was increased in the hippocampus in mice post-status epilepticus and during epilepsy, and in resected hippocampus and cortex of patients with drug-resistant temporal lobe epilepsy. Furthermore, CPEB4 is required for CLOCK expression after status epilepticus, with lower levels in CPEB4-deficient compared to wild-type mice. Last, CPEB4-deficient mice showed altered circadian function, including altered melatonin blood levels and altered clustering of spontaneous seizures during the day. SIGNIFICANCE: Our results reveal a new positive transcriptional-translational feedback loop involving CPEB4 and CLOCK, which may contribute to the regulation of the sleep-wake cycle during epilepsy.


Assuntos
Proteínas CLOCK , Epilepsia Resistente a Medicamentos , Epilepsia do Lobo Temporal , Melatonina , Proteínas de Ligação a RNA , Estado Epiléptico , Animais , Humanos , Masculino , Camundongos , Epilepsia do Lobo Temporal/metabolismo , Hipocampo , Melatonina/sangue , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Convulsões , Estado Epiléptico/induzido quimicamente , Estado Epiléptico/genética , Fatores de Transcrição/metabolismo , Proteínas CLOCK/genética
2.
Biol Psychiatry ; 94(4): 341-351, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-36958377

RESUMO

BACKGROUND: Schizophrenia (SCZ) is caused by an interplay of polygenic risk and environmental factors, which may alter regulators of gene expression leading to pathogenic misexpression of SCZ risk genes. The CPEB family of RNA-binding proteins (CPEB1-4) regulates translation of target RNAs (approximately 40% of overall genes). We previously identified CPEB4 as a key dysregulated translational regulator in autism spectrum disorder (ASD) because its neuronal-specific microexon (exon 4) is mis-spliced in ASD brains, causing underexpression of numerous ASD risk genes. The genetic factors and pathogenic mechanisms shared between SCZ and ASD led us to hypothesize CPEB4 mis-splicing in SCZ leading to underexpression of multiple SCZ-related genes. METHODS: We performed MAGMA-enrichment analysis on Psychiatric Genomics Consortium genome-wide association study data and analyzed RNA sequencing data from the PsychENCODE Consortium. Reverse transcriptase polymerase chain reaction and Western blot were performed on postmortem brain tissue, and the presence/absence of antipsychotics was assessed through toxicological analysis. Finally, mice with mild overexpression of exon 4-lacking CPEB4 (CPEB4Δ4) were generated and analyzed biochemically and behaviorally. RESULTS: First, we found enrichment of SCZ-associated genes for CPEB4-binder transcripts. We also found decreased usage of CPEB4 microexon in SCZ probands, which was correlated with decreased protein levels of CPEB4-target SCZ-associated genes only in antipsychotic-free individuals. Interestingly, differentially expressed genes fit those reported for SCZ, specifically in the SCZ probands with decreased CPEB4-microexon inclusion. Finally, we demonstrated that mice with mild overexpression of CPEB4Δ4 showed decreased protein levels of CPEB4-target SCZ genes and SCZ-linked behaviors. CONCLUSIONS: We identified aberrant CPEB4 splicing and downstream misexpression of SCZ risk genes as a novel etiological mechanism in SCZ.


Assuntos
Antipsicóticos , Transtorno do Espectro Autista , Esquizofrenia , Animais , Camundongos , Antipsicóticos/uso terapêutico , Transtorno do Espectro Autista/genética , Encéfalo/metabolismo , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Esquizofrenia/genética , Esquizofrenia/tratamento farmacológico
3.
Epilepsia ; 61(12): 2795-2810, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33070315

RESUMO

OBJECTIVE: Pharmacoresistance and the lack of disease-modifying actions of current antiseizure drugs persist as major challenges in the treatment of epilepsy. Experimental models of chemoconvulsant-induced status epilepticus remain the models of choice to discover potential antiepileptogenic drugs, but doubts remain as to the extent to which they model human pathophysiology. The aim of the present study was to compare the molecular landscape of the intra-amygdala kainic acid model of status epilepticus in mice with findings in resected brain tissue from patients with drug-resistant temporal lobe epilepsy (TLE). METHODS: Status epilepticus was induced via intra-amygdala microinjection of kainic acid in C57BL/6 mice, and gene expression was analyzed via microarrays in hippocampal tissue at acute and chronic time-points. Results were compared to reference datasets in the intraperitoneal pilocarpine and intrahippocampal kainic acid model and to human resected brain tissue (hippocampus and cortex) from patients with drug-resistant TLE. RESULTS: Intra-amygdala kainic acid injection in mice triggered extensive dysregulation of gene expression that was ~3-fold greater shortly after status epilepticus (2729 genes) when compared to epilepsy (412). Comparison to samples from patients with TLE revealed a particularly high correlation of gene dysregulation during established epilepsy. Pathway analysis found suppression of calcium signaling to be highly conserved across different models of epilepsy and patients. cAMP response element-binding protein (CREB) was predicted as one of the main upstream transcription factors regulating gene expression during acute and chronic phases, and inhibition of CREB reduced seizure severity in the intra-amygdala kainic acid model. SIGNIFICANCE: Our findings suggest the intra-amygdala kainic acid model faithfully replicates key molecular features of human drug-resistant TLE and provides potential rational target approaches for disease-modification through new insights into the unique and shared gene expression landscape in experimental epilepsy.


Assuntos
Tonsila do Cerebelo/efeitos dos fármacos , Modelos Animais de Doenças , Epilepsia Resistente a Medicamentos/metabolismo , Epilepsia do Lobo Temporal/metabolismo , Hipocampo/metabolismo , Ácido Caínico/farmacologia , Transcriptoma , Tonsila do Cerebelo/metabolismo , Animais , Eletroencefalografia , Expressão Gênica/efeitos dos fármacos , Humanos , Ácido Caínico/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase em Tempo Real , Estado Epiléptico/metabolismo
4.
Front Mol Neurosci ; 13: 567430, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33122998

RESUMO

Huntington's disease (HD) is a fatal degenerative disorder affecting the nervous system. It is characterized by motor, cognitive, and psychiatric dysfunctions, with a late onset and an autosomal dominant pattern of inheritance. HD-causing mutation consists in an expansion of repeated CAG triplets in the huntingtin gene (HTT), encoding for an expanded polyglutamine (polyQ) stretch in the huntingtin protein (htt). The mutation causes neuronal dysfunction and loss through multiple mechanisms, affecting both the nucleus and cytoplasm. P2X7 receptor (P2X7R) emerged as a major player in neuroinflammation, since ATP - its endogenous ligand - is massively released under this condition. Indeed, P2X7R stimulation in the central nervous system (CNS) is known to enhance the release of pro-inflammatory cytokines from microglia and of neurotransmitters from neuronal presynaptic terminals, as well as to promote apoptosis. Previous experiments performed with neurons expressing the mutant huntingtin and exploiting HD mouse models demonstrated a role of P2X7R in HD. On the basis of those results, here, we explore for the first time the status of P2X7R in HD patients' brain. We report that in HD postmortem striatum, as earlier observed in HD mice, the protein levels of the full-length form of P2X7R, also named P2X7R-A, are upregulated. In addition, the exclusively human naturally occurring variant lacking the C-terminus region, P2X7R-B, is upregulated as well. As we show here, this augmented protein levels can be explained by elevated mRNA levels. Furthermore, in HD patients' striatum, P2X7R shows not only an augmented total transcript level but also an alteration of its splicing. Remarkably, P2X7R introns 10 and 11 are more retained in HD patients when compared with controls. Taken together, our data confirm that P2X7R is altered in brains of HD subjects and strengthen the notion that P2X7R may represent a potential therapeutic target for HD.

5.
Brain ; 143(7): 2139-2153, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32594159

RESUMO

Temporal lobe epilepsy is the most common and refractory form of epilepsy in adults. Gene expression within affected structures such as the hippocampus displays extensive dysregulation and is implicated as a central pathomechanism. Post-transcriptional mechanisms are increasingly recognized as determinants of the gene expression landscape, but key mechanisms remain unexplored. Here we show, for first time, that cytoplasmic mRNA polyadenylation, one of the post-transcriptional mechanisms regulating gene expression, undergoes widespread reorganization in temporal lobe epilepsy. In the hippocampus of mice subjected to status epilepticus and epilepsy, we report >25% of the transcriptome displays changes in their poly(A) tail length, with deadenylation disproportionately affecting genes previously associated with epilepsy. Suggesting cytoplasmic polyadenylation element binding proteins (CPEBs) being one of the main contributors to mRNA polyadenylation changes, transcripts targeted by CPEBs were particularly enriched among the gene pool undergoing poly(A) tail alterations during epilepsy. Transcripts bound by CPEB4 were over-represented among transcripts with poly(A) tail alterations and epilepsy-related genes and CPEB4 expression was found to be increased in mouse models of seizures and resected hippocampi from patients with drug-refractory temporal lobe epilepsy. Finally, supporting an adaptive function for CPEB4, deletion of Cpeb4 exacerbated seizure severity and neurodegeneration during status epilepticus and the development of epilepsy in mice. Together, these findings reveal an additional layer of gene expression regulation during epilepsy and point to novel targets for seizure control and disease-modification in epilepsy.


Assuntos
Epilepsia do Lobo Temporal/metabolismo , Regulação da Expressão Gênica/fisiologia , Poliadenilação/fisiologia , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Animais , Epilepsia do Lobo Temporal/genética , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL
6.
Front Cell Neurosci ; 13: 386, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31496937

RESUMO

Formation of Tau aggregates is a common pathological feature of tauopathies and their accumulation directly correlates with cytotoxicity and neuronal degeneration. Great efforts have been made to understand Tau aggregation and to find therapeutics halting or reversing the process, however, progress has been slowed due to the lack of a suitable method for monitoring Tau aggregation. We developed a cell-based assay allowing to detect and quantify Tau aggregation in living cells. The system is based on the FRET biosensor CST able to monitor the molecular dynamic of Tau aggregation in different cellular conditions. We probed candidate compounds that could block Tau hyperphosphorylation. In particular, to foster the drug discovery process, we tested kinase inhibitors approved for the treatment of other diseases. We identified the ERK inhibitor PD-901 as a promising therapeutic molecule since it reduces and prevents Tau aggregation. This evidence establishes the CST cell-based aggregation assay as a reliable tool for drug discovery and suggests that PD-901 might be a promising compound to be tested for further preclinical studies on AD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...