Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 9(7): eadf9861, 2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36800431

RESUMO

Remote measurement of vital sign parameters like heartbeat and respiration rate represents a compelling challenge in monitoring an individual's health in a noninvasive way. This could be achieved by large field-of-view, easy-to-integrate unobtrusive sensors, such as large-area thin-film photodiodes. At long distances, however, discriminating weak light signals from background disturbance demands superior near-infrared (NIR) sensitivity and optical noise tolerance. Here, we report an inherently narrowband solution-processed, thin-film photodiode with ultrahigh and controllable NIR responsivity based on a tandem-like perovskite-organic architecture. The device has low dark currents (<10-6 mA cm-2), linear dynamic range >150 dB, and operational stability over time (>8 hours). With a narrowband quantum efficiency that can exceed 200% at 850 nm and intrinsic filtering of other wavelengths to limit optical noise, the device exhibits higher tolerance to background light than optically filtered silicon-based sensors. We demonstrate its potential in remote monitoring by measuring the heart rate and respiration rate from distances up to 130 cm in reflection.

2.
Adv Mater ; 34(40): e2205261, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36000490

RESUMO

Low-dimensional perovskites attract increasing interest due to tunable optoelectronic properties and high stability. Here, it is shown that perovskite thin films with a vertical gradient in dimensionality result in graded electronic bandgap structures that are ideal for photodiode applications. Positioning low-dimensional, vertically-oriented perovskite phases at the interface with the electron blocking layer increases the activation energy for thermal charge generation and thereby effectively lowers the dark current density to a record-low value of 5 × 10-9  mA cm-2 without compromising responsivity, resulting in a noise-current-based specific detectivity exceeding 7 × 1012 Jones at 600 nm. These multidimensional perovskite photodiodes show promising air stability and a dynamic range over ten orders of magnitude, and thus represent a new generation of high-performance low-cost photodiodes.

3.
Nat Commun ; 12(1): 7277, 2021 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-34907190

RESUMO

Metal halide perovskite photodiodes (PPDs) offer high responsivity and broad spectral sensitivity, making them attractive for low-cost visible and near-infrared sensing. A significant challenge in achieving high detectivity in PPDs is lowering the dark current density (JD) and noise current (in). This is commonly accomplished using charge-blocking layers to reduce charge injection. By analyzing the temperature dependence of JD for lead-tin based PPDs with different bandgaps and electron-blocking layers (EBL), we demonstrate that while EBLs eliminate electron injection, they facilitate undesired thermal charge generation at the EBL-perovskite interface. The interfacial energy offset between the EBL and the perovskite determines the magnitude and activation energy of JD. By increasing this offset we realized a PPD with ultralow JD and in of 5 × 10-8 mA cm-2 and 2 × 10-14 A Hz-1/2, respectively, and wavelength sensitivity up to 1050 nm, establishing a new design principle to maximize detectivity in perovskite photodiodes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...