Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(6)2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38544040

RESUMO

The Self-Mixing Interformeter (SMI) is a self-aligned optical interferometer which has been used for acoustic wave sensing in air through the acousto-optic effect. This paper presents how to use a SMI for the measurement of Sound Pressure Level (SPL) in acoustic waveguides. To achieve this, the SMI is first calibrated in situ as a vibrometer. The optical feedback parameters C and α in the strong feedback regime (C≥4.6) are estimated from the SMI vibrometric signals and by the solving of non-linear equations governing the SMI behaviour. The calibration method is validated on synthetic SMI signals simulated from SMI governing equations for C ranging from 5 to 20 and α ranging from 4 to 10. Knowing C and α, the SMI is then used as an acoustic pressure sensor. The SPLs obtained using the SMI are compared with a reference microphone, and a maximal deviation of 2.2 dB is obtained for plane waves of amplitudes ranging from 20 to 860 Pa and frequencies from 614 to 17,900 Hz. The SPL measurements are carried out for C values ranging from 7.1 to 21.5.

2.
JASA Express Lett ; 3(10)2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37819231

RESUMO

This work presents a sensitivity study on the use of an optical feedback interferometer to measure acoustic pressure from plane waves. The sensitivity is established by linearising the interferometer's governing equations. It is shown to be independent of the acoustic wave frequency but dependent on configuration parameters such as the optical feedback parameter or the length of the laser through which the acoustic wave passes. Experimental validation is carried out using three acoustic waveguides in the 0.5-18 kHz range. The sensitivity obtained enables broadband acoustic pressure measure with a low mean relative error in comparison with a reference condenser microphone.

3.
J Acoust Soc Am ; 154(1): 16-27, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37403994

RESUMO

The effect of elevation variation on sonic boom reflection is investigated using real terrain data. To this end, the full two-dimensional Euler equations are solved using finite-difference time-domain techniques. Numerical simulations are performed for two ground profiles of more than 10 km long, extracted from topographical data of hilly regions, and for two boom waves, a classical N-wave, and a low-boom wave. For both ground profiles, topography affects the reflected boom significantly. Wavefront folding due to terrain depression is notably highlighted. For the ground profile with mild slopes, the time signals of the acoustic pressure at the ground are, however, only slightly modified compared to the flat reference case, and the associated noise levels differ by less than 1 dB. With steep slopes, the contribution due to wavefront folding has a large amplitude at the ground. This results in an amplification of the noise levels: a 3 dB increase occurs at 1% of the positions along the ground surface, and a maximum of 5-6 dB is reached near the terrain depressions. These conclusions are valid for the N-wave and low-boom wave.

4.
J Acoust Soc Am ; 152(6): 3323, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36586837

RESUMO

Sonic boom propagation over urban areas is studied using numerical simulations based on the Euler equations. Two boom waves are examined: a classical N-wave and a low-boom wave. Ten urban geometries, generated from the local climate zone classification [Stewart and Oke (2012), Bull. Am. Meteorol. Soc. 93(12), 1879-1900], are considered representative of urban forms. They are sorted into two classes, according to the aspect ratio of urban canyons. For compact geometries with a large aspect ratio, the noise levels and the peak pressure, especially for the N-wave, are highly variable between canyons. For open geometries with a small aspect ratio, these parameters present the same evolution in each urban canyon, corresponding to that obtained for isolated buildings. A statistical analysis of the noise levels in urban canyons is then performed. For both boom waves, the median of the perceived noise levels mostly differs by less than 1 dB from the value obtained for flat ground. The range of variation is greater for open geometries than for compact ones. Finally, low-frequency oscillations, associated with resonant modes of the canyons, are present for both compact and open geometries. Their amplitude, frequency and decay rate vary greatly from one canyon to another.

5.
J Acoust Soc Am ; 151(6): 3792, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35778162

RESUMO

Sonic boom reflection is investigated over an isolated building and multiple buildings using numerical simulations. For that, the two-dimensional Euler equations are solved using high-order finite-difference techniques. Three urban geometries are considered for two boom waves, a classical N-wave and a low-boom wave. First, the variations of the pressure waveforms and the corresponding perceived noise are analyzed along an isolated building. The influence of the building is limited to an illuminated region at its front and a shadow region at its rear, whose size depends on the building's height and the Mach number. Two buildings are then considered. In addition to arrivals related to reflection on the building facades or to diffraction at the building corners, low-frequency oscillations, associated with resonances, are noticed in the street canyon. Their amplitude depends on the street width and on the incident boom frequency contents. Despite their significance, these low-frequency oscillations have little impact on the perceived noise. Finally, a periodic distribution of identical buildings is examined. The duration of the waveforms is notably increased due to multiple diffraction and canyon resonances. Variations in perceived noise at ground level are moderate for large streets, but become noticeable as the street width reduces.

6.
J Acoust Soc Am ; 151(6): 3703, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35778194

RESUMO

The active space is a central bioacoustic concept to understand communication networks and animal behavior. Propagation of biological acoustic signals has often been studied in homogeneous environments using an idealized circular active space representation, but few studies have assessed the variations of the active space due to environment heterogeneities and transmitter position. To study these variations for mountain birds like the rock ptarmigan, we developed a sound propagation model based on the parabolic equation method that accounts for the topography, the ground effects, and the meteorological conditions. The comparison of numerical simulations with measurements performed during an experimental campaign in the French Alps confirms the capacity of the model to accurately predict sound levels. We then use this model to show how mountain conditions affect surface and shape of active spaces, with topography being the most significant factor. Our data reveal that singing during display flights is a good strategy to adopt for a transmitter to expand its active space in such an environment. Overall, our study brings new perspectives to investigate the spatiotemporal dynamics of communication networks.


Assuntos
Aves , Som , Acústica , Animais , Comportamento Animal , Reprodução
7.
J Acoust Soc Am ; 149(4): 2437, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33940888

RESUMO

The influence of topography on sonic boom propagation is investigated. The full two-dimensional Euler equations in curvilinear coordinates are solved using high-order finite-difference time-domain techniques. Simple ground profiles, corresponding to a terrain depression, a hill, and a sinusoidal terrain, are examined for two sonic boom waves: a classical N-wave and a low-boom. Ground reflection of the sonic boom is affected by elevation variations: a concave ground profile induces compression, which tends to increase the peak pressure in particular, while the opposite is true for convex elevation variations, which lead to expansion and a reduction in peak pressure. The reflected boom is then strongly altered. Furthermore, a sufficiently concave topography can cause focal zones, which generate extra contributions at ground level in the form of U-waves in addition to the reflected wave. This mechanism has the largest effect on waveforms at ground level. The variations of standard metrics are of a few dBs compared to a flat ground for both sonic boom waves, and they are notably greater for the terrain depression than for the hill. Finally, in the case of a sinusoidal terrain, the pressure waveforms are composed of multiple arrivals due to successive focal zones.

8.
J Acoust Soc Am ; 146(5): EL438, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31795669

RESUMO

The authors have recently shown that irregular reflections of spark-generated pressure weak shocks from a smooth rigid surface can be studied using an optical interferometer [Karzova, Lechat, Ollivier, Dragna, Yuldashev, Khokhlova, and Blanc-Benon, J. Acoust. Soc. Am. 145(1), 26-35 (2019)]. The current study extends these results to the reflection from rough surfaces. A Mach-Zehnder interferometer is used to measure pressure waveforms. Simulations are based on the solution of axisymmetric Euler equations. It is shown that roughness causes a decrease of the Mach stem height and the appearance of oscillations in the pressure waveforms. Close to rough surfaces, the pressure was higher compared to the smooth surface.

9.
J Acoust Soc Am ; 145(1): 26, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30710976

RESUMO

The irregular reflection of weak acoustic shock waves, known as the von Neumann reflection, has been observed experimentally and numerically for spherically diverging waves generated by an electric spark source. Two optical measurement methods are used: a Mach-Zehnder interferometer for measuring pressure waveforms and a Schlieren system for visualizing shock fronts. Pressure waveforms are reconstructed from the light phase difference measured by the interferometer using the inverse Abel transform. In numerical simulations, the axisymmetric Euler equations are solved using finite-difference time-domain methods and the spark source is modeled as an instantaneous energy injection with a Gaussian shape. Waveforms and reflection patterns obtained from the simulations are in good agreement with those measured by the interferometer and the Schlieren methods. The Mach stem formation is observed close to the surface for incident pressures within the range of 800 to 4000 Pa. Similarly, as for strong shocks generated by blasts, it is found that for spherical weak shocks the Mach stem length increases with distance following a parabolic law. This study confirms the occurrence of irregular reflections at acoustic pressure levels and demonstrates the benefits of the Mach-Zehnder interferometer method when microphone measurements cannot be applied.

10.
J Acoust Soc Am ; 142(6): 3402, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29289086

RESUMO

Linear and nonlinear propagation of high amplitude acoustic pulses through a turbulent layer in air is investigated using a two-dimensional KZK-type (Khokhlov-Zabolotskaya-Kuznetsov) equation. Initial waves are symmetrical N-waves with shock fronts of finite width. A modified von Kármán spectrum model is used to generate random wind velocity fluctuations associated with the turbulence. Physical parameters in simulations correspond to previous laboratory scale experiments where N-waves with 1.4 cm wavelength propagated through a turbulence layer with the outer scale of about 16 cm. Mean value and standard deviation of peak overpressure and shock steepness, as well as cumulative probabilities to observe amplified peak overpressure and shock steepness, are analyzed. Nonlinear propagation effects are shown to enhance pressure level in random foci for moderate initial amplitudes of N-waves thus increasing the probability to observe highly peaked waveforms. Saturation of the pressure level is observed for stronger nonlinear effects. It is shown that in the linear propagation regime, the turbulence mainly leads to the smearing of shock fronts, thus decreasing the probability to observe high values of steepness, whereas nonlinear effects dramatically increase the probability to observe steep shocks.

11.
J Acoust Soc Am ; 137(6): 3244-52, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26093414

RESUMO

Accurate measurement of high-amplitude, broadband shock pulses in air is an important part of laboratory-scale experiments in atmospheric acoustics. Although various methods have been developed, specific drawbacks still exist and need to be addressed. Here, a schlieren optical method was used to reconstruct the pressure signatures of nonlinear spherically diverging short acoustic pulses generated using an electric spark source (2.5 kPa, 33 µs at 10 cm from the source) in homogeneous air. A high-speed camera was used to capture light rays deflected by refractive index inhomogeneities, caused by the acoustic wave. Pressure waveforms were reconstructed from the light intensity patterns in the recorded images using an Abel-type inversion method. Absolute pressure levels were determined by analyzing at different propagation distances the duration of the compression phase of pulses, which changed due to nonlinear propagation effects. Numerical modeling base on the generalized Burgers equation was used to evaluate the smearing of the waveform caused by finite exposure time of the high-speed camera and corresponding limitations in resolution of the schlieren technique. The proposed method allows the study of the evolution of spark-generated shock waves in air starting from the very short distances from the spark, 30 mm, up to 600 mm.

12.
J Acoust Soc Am ; 137(6): 3314-24, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26093421

RESUMO

A Mach-Zehnder interferometer is used to measure spherically diverging N-waves in homogeneous air. An electrical spark source is used to generate high-amplitude (1800 Pa at 15 cm from the source) and short duration (50 µs) N-waves. Pressure waveforms are reconstructed from optical phase signals using an Abel-type inversion. It is shown that the interferometric method allows one to reach 0.4 µs of time resolution, which is 6 times better than the time resolution of a 1/8-in. condenser microphone (2.5 µs). Numerical modeling is used to validate the waveform reconstruction method. The waveform reconstruction method provides an error of less than 2% with respect to amplitude in the given experimental conditions. Optical measurement is used as a reference to calibrate a 1/8-in. condenser microphone. The frequency response function of the microphone is obtained by comparing the spectra of the waveforms resulting from optical and acoustical measurements. The optically measured pressure waveforms filtered with the microphone frequency response are in good agreement with the microphone output voltage. Therefore, an optical measurement method based on the Mach-Zehnder interferometer is a reliable tool to accurately characterize evolution of weak shock waves in air and to calibrate broadband acoustical microphones.

13.
J Acoust Soc Am ; 137(6): EL436-42, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26093452

RESUMO

The aim of this study is to show the evidence of Mach stem formation for very weak shock waves with acoustic Mach numbers on the order of 10(-3) to 10(-2). Two representative cases are considered: reflection of shock pulses from a rigid surface and focusing of nonlinear acoustic beams. Reflection experiments are performed in air using spark-generated shock pulses. Shock fronts are visualized using a schlieren system. Both regular and irregular types of reflection are observed. Numerical simulations are performed to demonstrate the Mach stem formation in the focal region of periodic and pulsed nonlinear beams in water.

14.
J Acoust Soc Am ; 136(2): 556-66, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25096090

RESUMO

The nonlinear propagation of spark-generated N-waves through thermal turbulence is experimentally studied at the laboratory scale under well-controlled conditions. A grid of electrical resistors was used to generate the turbulent field, well described by a modified von Kármán model. A spark source was used to generate high-amplitude (~1500 Pa) and short duration (~50 µs) N-waves. Thousands of waveforms were acquired at distances from 250 to 1750 mm from the source (~15 to 100 wavelengths). The mean values and the probability densities of the peak pressure, the deviation angle, and the rise time of the pressure wave were obtained as functions of propagation distance through turbulence. The peak pressure distributions were described using a generalized gamma distribution, whose coefficients depend on the propagation distance. A line array of microphones was used to analyze the effect of turbulence on the propagation direction. The angle of deviation induced by turbulence was found to be smaller than 15°, which validates the use of the parabolic equation method to model this kind of experiment. The transverse size of the focus regions was estimated to be on the order of the acoustic wavelength for propagation distances longer than 50 wavelengths.

15.
J Acoust Soc Am ; 130(6): 3595-607, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22225017

RESUMO

A laboratory experiment was conducted to study the propagation of short duration (25 µs) and high amplitude (1000 Pa) acoustic N-waves in turbulent flow. Turbulent flows with a root-mean-square value of the fluctuating velocity up to 4 m/s were generated using a bidimensional nozzle (140 × 1600 mm(2)). Energy spectra of velocity fluctuations were measured and found in good agreement with the modified von Kármán spectrum for fully developed turbulence. Spherical N-waves were generated by an electric spark source. Distorted waves were measured by four 3 mm diameter microphones placed beyond the turbulent jet. The presence of turbulence resulted in random focusing of the pulse; more than a threefold increase of peak pressures was occasionally observed. Statistics of the acoustic field parameters were evaluated as functions of the propagation distance and the level of turbulence fluctuations. It is shown that random inhomogeneities decrease the mean peak positive pressure up to 30% at 2 m from the source, double the mean rise time, and cause the arrival time about 0.3% earlier than that for corresponding conditions in still air. Probability distributions of the pressure amplitude possess autosimilarity properties with respect to the level of turbulence fluctuations.

16.
J Acoust Soc Am ; 128(6): 3321-33, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21218866

RESUMO

The propagation of nonlinear spherically diverging N-waves in homogeneous air is studied experimentally and theoretically. A spark source is used to generate high amplitude (1.4 kPa) short duration (40 µs) N-waves; acoustic measurements are performed using microphones (3 mm diameter, 150 kHz bandwidth). Numerical modeling with the generalized Burgers equation is used to reveal the relative effects of acoustic nonlinearity, thermoviscous absorption, and oxygen and nitrogen relaxation on the wave propagation. The results of modeling are in a good agreement with the measurements in respect to the wave amplitude and duration. However, the measured rise time of the front shock is ten times longer than the calculated one, which is attributed to the limited bandwidth of the microphone. To better resolve the shock thickness, a focused shadowgraphy technique is used. The recorded optical shadowgrams are compared with shadow patterns predicted by geometrical optics and scalar diffraction model of light propagation. It is shown that the geometrical optics approximation results in overestimation of the shock rise time, while the diffraction model allows to correctly resolve the shock width. A combination of microphone measurements and focused optical shadowgraphy is therefore a reliable way of studying evolution of spark-generated shock waves in air.


Assuntos
Acústica , Ar , Ondas de Choque de Alta Energia , Dinâmica não Linear , Fenômenos Ópticos , Som , Absorção , Acústica/instrumentação , Simulação por Computador , Gases , Movimento (Física) , Nitrogênio , Análise Numérica Assistida por Computador , Oxigênio , Pressão , Fatores de Tempo , Transdutores de Pressão
17.
J Acoust Soc Am ; 118(5): 3294-305, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16334700

RESUMO

This paper investigates the dynamic range of the clarinet from the oscillation threshold to the extinction at high pressure level. The use of an elementary model for the reed-mouthpiece valve effect combined with a simplified model of the pipe assuming frequency independent losses (Raman's model) allows an analytical calculation of the oscillations and their stability analysis. The different thresholds are shown to depend on parameters related to embouchure parameters and to the absorption coefficient in the pipe. Their values determine the dynamic range of the fundamental oscillations and the bifurcation scheme at the extinction.


Assuntos
Acústica , Modelos Teóricos , Música , Humanos , Boca , Periodicidade
18.
J Acoust Soc Am ; 114(4 Pt 1): 2253-62, 2003 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-14587622

RESUMO

A wind instrument can be described as a closed feedback loop made up of a linear passive element-the resonator-and a lumped nonlinear element-the mouthpiece. A method for measuring the nonlinear characteristics of the mouthpiece-nonlinear flow relationship-in static condition is given. An artificial mouth is used in which the volume flow is deduced from the pressure difference between both sides of a constriction (orifice) which takes place in the resonator. The orifice also plays the role of a nonlinear absorber, thwarting possible reed oscillations. This allows the measurement of the complete characteristics. In addition, the reed opening is measured using an optical device. Results are compared to a model in which the reed is reduced to its stiffness and the flow is governed by the Bernoulli equation. It is shown that the reed stiffness and the ratio of the effective surface of the jet and the reed opening are constant in a large range of openings. Standard range values of embouchure parameters are given.


Assuntos
Música , Dinâmica não Linear , Pressão do Ar , Humanos , Computação Matemática , Oscilometria , Ventilação Pulmonar , Vibração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...