Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Public Health ; 4: 170, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27597937

RESUMO

The determinants of health are those factors that have the potential to affect health, either positively or negatively, and include a range of personal, social, economic, and environmental factors. In the practice of health impact assessment (HIA), the stage at which the determinants of health are considered for inclusion is during the scoping step. The scoping step is intended to identify how the HIA will be carried out and to set the boundaries (e.g., temporal and geographical) for the assessment. There are several factors that can help to inform the scoping process, many of which are considered in existing HIA tools and guidance; however, a systematic method of prioritizing determinants was found to be lacking. In order to analyze existing HIA scoping tools that are available, a systematic literature review was conducted, including both primary and gray literature. A total of 10 HIA scoping tools met the inclusion/exclusion criteria and were carried forward for comparative analysis. The analysis focused on minimum elements and practice standards of HIA scoping that have been established in the field. The analysis determined that existing approaches lack a clear, systematic method of prioritization of health determinants for inclusion in HIA. This finding led to the development of a Systematic HIA Scoping tool that addressed this gap. The decision matrix tool uses factors, such as impact, public concern, and data availability, to prioritize health determinants. Additionally, the tool allows for identification of data gaps and provides a transparent method for budget allocation and assessment planning. In order to increase efficiency and improve utility, the tool was programed into Microsoft Excel. Future work in the area of HIA methodology development is vital to the ongoing success of the practice and utilization of HIA as a reliable decision-making tool.

2.
Risk Anal ; 36(12): 2195-2207, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-26856254

RESUMO

As industrial development is increasing near northern Canadian communities, human health risk assessments (HHRA) are conducted to assess the predicted magnitude of impacts of chemical emissions on human health. One exposure pathway assessed for First Nations communities is the consumption of traditional plants, such as muskeg tea (Labrador tea) (Ledum/Rhododendron groenlandicum) and mint (Mentha arvensis). These plants are used to make tea and are not typically consumed in their raw form. Traditional practices were used to harvest muskeg tea leaves and mint leaves by two First Nations communities in northern Alberta, Canada. Under the direction of community elders, community youth collected and dried plants to make tea. Soil, plant, and tea decoction samples were analyzed for inorganic elements using inductively coupled plasma-mass spectrometry. Concentrations of inorganic elements in the tea decoctions were orders of magnitude lower than in the vegetation (e.g., manganese 0.107 mg/L in tea, 753 mg/kg in leaves). For barium, the practice of assessing ingestion of raw vegetation would have resulted in a hazard quotient (HQ) greater than the benchmark of 0.2. Using measured tea concentrations it was determined that exposure would result in risk estimates orders of magnitude below the HQ benchmark of 0.2 (HQ = 0.0049 and 0.017 for muskeg and mint tea, respectively). An HHRA calculating exposure to tea vegetation through direct ingestion of the leaves may overestimate risk. The results emphasize that food preparation methods must be considered when conducting an HHRA. This study illustrates how collaboration between Western scientists and First Nations communities can add greater clarity to risk assessments.

3.
Int J Occup Med Environ Health ; 29(2): 229-53, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26670354

RESUMO

OBJECTIVES: The Health Impact Assessment (HIA) was conducted to evaluate the potential community health implications of a proposed oil drilling and production project in Hermosa Beach, California. The HIA considered 17 determinants of health that fell under 6 major categories (i.e., air quality, water and soil quality, upset conditions, noise and light emissions, traffic, and community livability). MATERIAL AND METHODS: This paper attempts to address some of the gaps within the HIA practice by presenting the methodological approach and results of this transparent, comprehensive HIA; specifically, the evaluation matrix and decision-making framework that have been developed for this HIA and form the basis of the evaluation and allow for a clear conclusion to be reached in respect of any given health determinant (i.e., positive, negative, neutral). RESULTS: There is a number of aspects of the project that may positively influence health (e.g., increased education funding, ability to enhance green space), and at the same time there have been potential negative effects identified (e.g., odor, blowouts, property values). Except for upset conditions, the negative health outcomes have been largely nuisance-related (e.g., odor, aesthetics) without irreversible health impacts. The majority of the health determinants, that had been examined, have revealed that the project would have no substantial effect on the health of the community. CONCLUSIONS: Using the newly developed methodology and based on established mitigation measures and additional recommendations provided in the HIA, the authors have concluded that the project will have no substantial effect on community health. This approach and methodology will assist practitioners, stakeholders and decision-makers in advancing the HIA as a useful, reproducible, and informative tool.


Assuntos
Avaliação do Impacto na Saúde/métodos , Política de Saúde , Promoção da Saúde/métodos , Doenças Profissionais/prevenção & controle , Indústria de Petróleo e Gás , California/epidemiologia , Humanos , Incidência , Doenças Profissionais/epidemiologia
4.
Front Public Health ; 3: 31, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25759808

RESUMO

Setbacks for wind turbines have been established in many jurisdictions to address potential health concerns associated with audible noise. However, in recent years, it has been suggested that infrasound (IS) and low-frequency noise (LFN) could be responsible for the onset of adverse health effects self-reported by some individuals living in proximity to wind turbines, even when audible noise limits are met. The purpose of this paper was to investigate whether current audible noise-based guidelines for wind turbines account for the protection of human health, given the levels of IS and LFN typically produced by wind turbines. New field measurements of indoor IS and outdoor LFN at locations between 400 and 900 m from the nearest turbine, which were previously underrepresented in the scientific literature, are reported and put into context with existing published works. Our analysis showed that indoor IS levels were below auditory threshold levels while LFN levels at distances >500 m were similar to background LFN levels. A clear contribution to LFN due to wind turbine operation (i.e., measured with turbines on in comparison to with turbines off) was noted at a distance of 480 m. However, this corresponded to an increase in overall audible sound measures as reported in dB(A), supporting the hypothesis that controlling audible sound produced by normally operating wind turbines will also control for LFN. Overall, the available data from this and other studies suggest that health-based audible noise wind turbine siting guidelines provide an effective means to evaluate, monitor, and protect potential receptors from audible noise as well as IS and LFN.

5.
Front Public Health ; 2: 63, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24995266

RESUMO

The association between wind turbines and health effects is highly debated. Some argue that reported health effects are related to wind turbine operation [electromagnetic fields (EMF), shadow flicker, audible noise, low-frequency noise, infrasound]. Others suggest that when turbines are sited correctly, effects are more likely attributable to a number of subjective variables that result in an annoyed/stressed state. In this review, we provide a bibliographic-like summary and analysis of the science around this issue specifically in terms of noise (including audible, low-frequency noise, and infrasound), EMF, and shadow flicker. Now there are roughly 60 scientific peer-reviewed articles on this issue. The available scientific evidence suggests that EMF, shadow flicker, low-frequency noise, and infrasound from wind turbines are not likely to affect human health; some studies have found that audible noise from wind turbines can be annoying to some. Annoyance may be associated with some self-reported health effects (e.g., sleep disturbance) especially at sound pressure levels >40 dB(A). Because environmental noise above certain levels is a recognized factor in a number of health issues, siting restrictions have been implemented in many jurisdictions to limit noise exposure. These setbacks should help alleviate annoyance from noise. Subjective variables (attitudes and expectations) are also linked to annoyance and have the potential to facilitate other health complaints via the nocebo effect. Therefore, it is possible that a segment of the population may remain annoyed (or report other health impacts) even when noise limits are enforced. Based on the findings and scientific merit of the available studies, the weight of evidence suggests that when sited properly, wind turbines are not related to adverse health. Stemming from this review, we provide a number of recommended best practices for wind turbine development in the context of human health.

6.
Environ Health ; 13(1): 9, 2014 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-24529028

RESUMO

BACKGROUND: The past five years has seen considerable expansion of wind power generation in Ontario, Canada. Most recently worries about exposure to electromagnetic fields (EMF) from wind turbines, and associated electrical transmission, has been raised at public meetings and legal proceedings. These fears have not been based on any actual measurements of EMF exposure surrounding existing projects but appear to follow from worries from internet sources and misunderstanding of the science. METHODS: The study was carried out at the Kingsbridge 1 Wind Farm located near Goderich, Ontario, Canada. Magnetic field measurements were collected in the proximity of 15 Vestas 1.8 MW wind turbines, two substations, various buried and overhead collector and transmission lines, and nearby homes. Data were collected during three operational scenarios to characterize potential EMF exposure: 'high wind' (generating power), 'low wind' (drawing power from the grid, but not generating power) and 'shut off' (neither drawing, nor generating power). RESULTS: Background levels of EMF (0.2 to 0.3 mG) were established by measuring magnetic fields around the wind turbines under the 'shut off' scenario. Magnetic field levels detected at the base of the turbines under both the 'high wind' and 'low wind' conditions were low (mean = 0.9 mG; n = 11) and rapidly diminished with distance, becoming indistinguishable from background within 2 m of the base. Magnetic fields measured 1 m above buried collector lines were also within background (≤ 0.3 mG). Beneath overhead 27.5 kV and 500 kV transmission lines, magnetic field levels of up to 16.5 and 46 mG, respectively, were recorded. These levels also diminished rapidly with distance. None of these sources appeared to influence magnetic field levels at nearby homes located as close as just over 500 m from turbines, where measurements immediately outside of the homes were ≤ 0.4 mG. CONCLUSIONS: The results suggest that there is nothing unique to wind farms with respect to EMF exposure; in fact, magnetic field levels in the vicinity of wind turbines were lower than those produced by many common household electrical devices and were well below any existing regulatory guidelines with respect to human health.


Assuntos
Campos Eletromagnéticos , Vento , Monitoramento Ambiental , Humanos , Ontário , Medição de Risco
7.
Sci Total Environ ; 466-467: 345-56, 2014 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-23911923

RESUMO

The regions of Durham and York in Ontario, Canada have partnered to construct an energy-from-waste thermal treatment facility as part of a long term strategy for the management of their municipal solid waste. This paper presents the results of a comprehensive human health risk assessment for this facility. This assessment was based on extensive sampling of baseline environmental conditions (e.g., collection and analysis of air, soil, water, and biota samples) as well as detailed site specific modeling to predict facility-related emissions of 87 identified contaminants of potential concern. Emissions were estimated for both the approved initial operating design capacity of the facility (140,000 tonnes per year) and for the maximum design capacity (400,000 tonnes per year). For the 140,000 tonnes per year scenario, this assessment indicated that facility-related emissions are unlikely to cause adverse health risks to local residents, farmers, or other receptors (e.g., recreational users). For the 400,000 tonnes per year scenarios, slightly elevated risks were noted with respect to inhalation (hydrogen chloride) and infant consumption of breast milk (dioxins and furans), but only during predicted 'upset conditions' (i.e. facility start-up, shutdown, and loss of air pollution control) that represent unusual and/or transient occurrences. However, current provincial regulations require that additional environmental screening would be mandatory prior to expansion of the facility beyond the initial approved capacity (140,000 tonnes per year). Therefore, the potential risks due to upset conditions for the 400,000 tonnes per year scenario should be more closely investigated if future expansion is pursued.


Assuntos
Conservação de Recursos Energéticos , Exposição Ambiental , Monitoramento Ambiental/métodos , Poluentes Ambientais/toxicidade , Humanos , Ontário , Medição de Risco/métodos
8.
Sci Total Environ ; 466-467: 242-52, 2014 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-23895787

RESUMO

The regions of Durham and York in Ontario, Canada have partnered to construct an energy-from-waste (EFW) thermal treatment facility as part of a long term strategy for the management of their municipal solid waste. In this paper we present the results of a comprehensive ecological risk assessment (ERA) for this planned facility, based on baseline sampling and site specific modeling to predict facility-related emissions, which was subsequently accepted by regulatory authorities. Emissions were estimated for both the approved initial operating design capacity of the facility (140,000 tonnes per year) and the maximum design capacity (400,000 tonnes per year). In general, calculated ecological hazard quotients (EHQs) and screening ratios (SRs) for receptors did not exceed the benchmark value (1.0). The only exceedances noted were generally due to existing baseline media concentrations, which did not differ from those expected for similar unimpacted sites in Ontario. This suggests that these exceedances reflect conservative assumptions applied in the risk assessment rather than actual potential risk. However, under predicted upset conditions at 400,000 tonnes per year (i.e., facility start-up, shutdown, and loss of air pollution control), a potential unacceptable risk was estimated for freshwater receptors with respect to benzo(g,h,i)perylene (SR=1.1), which could not be attributed to baseline conditions. Although this slight exceedance reflects a conservative worst-case scenario (upset conditions coinciding with worst-case meteorological conditions), further investigation of potential ecological risk should be performed if this facility is expanded to the maximum operating capacity in the future.


Assuntos
Conservação de Recursos Energéticos , Exposição Ambiental , Monitoramento Ambiental/métodos , Poluentes Ambientais/toxicidade , Plantas/efeitos dos fármacos , Vertebrados/metabolismo , Animais , Ontário , Medição de Risco/métodos
10.
Environ Health ; 10: 78, 2011 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-21914211

RESUMO

BACKGROUND: Wind power has been harnessed as a source of power around the world. Debate is ongoing with respect to the relationship between reported health effects and wind turbines, specifically in terms of audible and inaudible noise. As a result, minimum setback distances have been established world-wide to reduce or avoid potential complaints from, or potential effects to, people living in proximity to wind turbines. People interested in this debate turn to two sources of information to make informed decisions: scientific peer-reviewed studies published in scientific journals and the popular literature and internet. METHODS: The purpose of this paper is to review the peer-reviewed scientific literature, government agency reports, and the most prominent information found in the popular literature. Combinations of key words were entered into the Thomson Reuters Web of KnowledgeSM and the internet search engine Google. The review was conducted in the spirit of the evaluation process outlined in the Cochrane Handbook for Systematic Reviews of Interventions. RESULTS: Conclusions of the peer reviewed literature differ in some ways from those in the popular literature. In peer reviewed studies, wind turbine annoyance has been statistically associated with wind turbine noise, but found to be more strongly related to visual impact, attitude to wind turbines and sensitivity to noise. To date, no peer reviewed articles demonstrate a direct causal link between people living in proximity to modern wind turbines, the noise they emit and resulting physiological health effects. If anything, reported health effects are likely attributed to a number of environmental stressors that result in an annoyed/stressed state in a segment of the population. In the popular literature, self-reported health outcomes are related to distance from turbines and the claim is made that infrasound is the causative factor for the reported effects, even though sound pressure levels are not measured. CONCLUSIONS: What both types of studies have in common is the conclusion that wind turbines can be a source of annoyance for some people. The difference between both types is the reason for annoyance. While it is acknowledged that noise from wind turbines can be annoying to some and associated with some reported health effects (e.g., sleep disturbance), especially when found at sound pressure levels greater than 40 db(A), given that annoyance appears to be more strongly related to visual cues and attitude than to noise itself, self reported health effects of people living near wind turbines are more likely attributed to physical manifestation from an annoyed state than from wind turbines themselves. In other words, it appears that it is the change in the environment that is associated with reported health effects and not a turbine-specific variable like audible noise or infrasound. Regardless of its cause, a certain level of annoyance in a population can be expected (as with any number of projects that change the local environment) and the acceptable level is a policy decision to be made by elected officials and their government representatives where the benefits of wind power are weighted against their cons. Assessing the effects of wind turbines on human health is an emerging field and conducting further research into the effects of wind turbines (and environmental changes) on human health, emotional and physical, is warranted.


Assuntos
Atitude , Ruído/efeitos adversos , Centrais Elétricas , Percepção Visual , Vento , Percepção Auditiva , Fontes Geradoras de Energia , Meio Ambiente , Política Ambiental , Humanos , Publicações Periódicas como Assunto
11.
Sci Total Environ ; 407(18): 5050-5, 2009 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-19580994

RESUMO

A former local source of PCBs has contaminated soil and the terrestrial food web at Saglek, Labrador. The relationship between PCB exposure and bone mineral density as an osteoporosis biomarker in deer mice (Peromyscus maniculatus) was investigated at two sites at Saglek: a contaminated Beach and a reference area. Bone mineral density was measured on the femur of twenty-six deer mice using dual-energy X-ray absorptiometry (DXA) technology. Bone mineral density was significantly lower in deer mice from the high exposure site (average whole body summation operatorPCB=5769 ng/g wet weight, n=20) than at the reference site (average whole body summation operatorPCB=79.8 ng/g wet weight, n=7). We used T-scores from the World Health Organization to determine the degree of decreased bone mineral density in exposed mice. Assuming the same biomechanical forces apply as for humans, and using a conservative factor of 1.5 (fracture risk increases 1.5 to 3 fold for every standard deviation decrease in bone mineral density), mice from the contaminated Beach are up to five folds more susceptible to fracture risk than mice from the reference area. Therefore, the PCB concentrations found locally at contaminated military sites such as Saglek are high enough to affect local wildlife.


Assuntos
Densidade Óssea/efeitos dos fármacos , Bifenilos Policlorados/toxicidade , Absorciometria de Fóton , Animais , Peromyscus
12.
Environ Toxicol Chem ; 28(3): 668-75, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18939889

RESUMO

The risk of arsenic exposure to deer mice (Peromyscus maniculatus) living in areas of naturally and anthropogenically elevated arsenic levels was determined using three separate calculations of arsenic daily intake: Estimated daily intake (EDI), bioaccessible EDI (BEDI), and actual daily intake (ADI). The present work is of particular interest, because the risk assessments were determined for animals naturally exposed to arsenic. Gastric fluid extraction was used to obtain bioaccessibility data for soil and plant samples collected from three study sites (background, mine forest, and tailings) in Yellowknife (NT, Canada). Calculations using the EDI indicated that deer mice living in tailings habitat (average soil arsenic concentration, 1,740 +/- 2,240 microg/g) should have been experiencing serious health effects as a result of their exposure to arsenic. Using BEDI and ADI in the risk assessment calculation, however, resulted in an order-of-magnitude decrease in calculated risk. In addition, results calculated using the BEDI and ADI were not significantly different, suggesting that using bioaccessibility provides a more realistic estimate of potential risk. The present results provide evidence that the use of EDI in traditional risk assessments may seriously overestimate the actual risk, which in some instances may result in expensive and unnecessary clean-up measures.


Assuntos
Arsênio/química , Arsênio/farmacocinética , Monitoramento Ambiental/métodos , Animais , Disponibilidade Biológica , Resíduos Industriais , Mineração , Territórios do Noroeste , Peromyscus , Medição de Risco , Poluentes do Solo/química , Poluentes do Solo/farmacocinética , Árvores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...