Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38659776

RESUMO

CRISPR-Cas9 is a useful tool for inserting precise genetic alterations through homology-directed repair (HDR), although current methods rely on provision of an exogenous repair template. Here, we tested the possibility of repairing heterozygous single nucleotide variants (SNVs) using the cell's own wild-type allele rather than an exogenous template. Using high-fidelity Cas9 to perform allele-specific CRISPR across multiple human leukemia cell lines as well as in primary hematopoietic cells from patients with leukemia, we find high levels of reversion to wild-type in the absence of exogenous template. Moreover, we demonstrate that bulk treatment to revert a truncating mutation in ASXL1 using CRISPR-mediated interallelic gene conversion (IGC) is sufficient to prolong survival in a human cell line-derived xenograft model (median survival 33 days vs 27.5 days; p = 0.0040). These results indicate that IGC can be applied to numerous types of leukemia and can meaningfully alter cellular phenotypes at scale. Because our method targets single-base mutations, rather than larger variants targeted by IGC in prior studies, it greatly expands the pool of risk-increasing genetic lesions which could potentially be targeted by IGC. This technique may reduce cost and complexity for experiments modeling phenotypic consequences of SNVs. The principles of SNV-specific IGC demonstrated in this proof-of-concept study could be applied to investigate the phenotypic effects of targeted clonal reduction of leukemogenic SNV driver mutations.

2.
Cancer Res ; 84(7): 1101-1114, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38285895

RESUMO

Impairing the BET family coactivator BRD4 with small-molecule inhibitors (BETi) showed encouraging preclinical activity in treating acute myeloid leukemia (AML). However, dose-limiting toxicities and limited clinical activity dampened the enthusiasm for BETi as a single agent. BETi resistance in AML myeloblasts was found to correlate with maintaining mitochondrial respiration, suggesting that identifying the metabolic pathway sustaining mitochondrial integrity could help develop approaches to improve BETi efficacy. Herein, we demonstrated that mitochondria-associated lactate dehydrogenase allows AML myeloblasts to utilize lactate as a metabolic bypass to fuel mitochondrial respiration and maintain cellular viability. Pharmacologically and genetically impairing lactate utilization rendered resistant myeloblasts susceptible to BET inhibition. Low-dose combinations of BETi and oxamate, a lactate dehydrogenase inhibitor, reduced in vivo expansion of BETi-resistant AML in cell line and patient-derived murine models. These results elucidate how AML myeloblasts metabolically adapt to BETi by consuming lactate and demonstrate that combining BETi with inhibitors of lactate utilization may be useful in AML treatment. SIGNIFICANCE: Lactate utilization allows AML myeloblasts to maintain metabolic integrity and circumvent antileukemic therapy, which supports testing of lactate utilization inhibitors in clinical settings to overcome BET inhibitor resistance in AML. See related commentary by Boët and Sarry, p. 950.


Assuntos
Leucemia Mieloide Aguda , Proteínas Nucleares , Humanos , Animais , Camundongos , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Ácido Láctico , Linhagem Celular Tumoral , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/metabolismo , Lactato Desidrogenases , Proteínas que Contêm Bromodomínio , Proteínas de Ciclo Celular
3.
J Neurochem ; 2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37777475

RESUMO

Rett syndrome is an X-linked neurodevelopmental disorder caused by mutation of Mecp2 gene and primarily affects females. Glial cell dysfunction has been implicated in in Rett syndrome (RTT) both in patients and in mouse models of this disorder and can affect synaptogenesis, glial metabolism and inflammation. Here we assessed whether treatment of adult (5-6 months old) symptomatic Mecp2-heterozygous female mice with N-acetyl cysteine conjugated to dendrimer (D-NAC), which is known to target glia and modulate inflammation and oxidative injury, results in improved behavioral phenotype, sleep and glial inflammatory profile. We show that unbiased global metabolomic analysis of the hippocampus and striatum in adult Mecp2-heterozygous mice demonstrates significant differences in lipid metabolism associated with neuroinflammation, providing the rationale for targeting glial inflammation in this model. Our results demonstrate that treatment with D-NAC (10 mg/kg NAC) once weekly is more efficacious than equivalently dosed free NAC in improving the gross neurobehavioral phenotype in symptomatic Mecp2-heterozygous female mice. We also show that D-NAC therapy is significantly better than saline in ameliorating several aspects of the abnormal phenotype including paw clench, mobility, fear memory, REM sleep and epileptiform activity burden. Systemic D-NAC significantly improves microglial proinflammatory cytokine production and is associated with improvements in several aspects of the phenotype including paw clench, mobility, fear memory, and REM sleep, and epileptiform activity burden in comparison to saline-treated Mecp2-hetereozygous mice. Systemic glial-targeted delivery of D-NAC after symptom onset in an older clinically relevant Rett syndrome model shows promise in improving neurobehavioral impairments along with sleep pattern and epileptiform activity burden. These findings argue for the translational value of this approach for treatment of patients with Rett Syndrome.

4.
Bioeng Transl Med ; 7(1): e10259, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35079634

RESUMO

Cardiac arrest (CA), the sudden cessation of effective cardiac pumping function, is still a major clinical problem with a high rate of early and long-term mortality. Post-cardiac arrest syndrome (PCAS) may be related to an early systemic inflammatory response leading to exaggerated and sustained neuroinflammation. Therefore, early intervention with targeted drug delivery to attenuate neuroinflammation may greatly improve therapeutic outcomes. Using a clinically relevant asphyxia CA model, we demonstrate that a single (i.p.) dose of dendrimer-N-acetylcysteine conjugate (D-NAC), can target "activated" microglial cells following CA, leading to an improvement in post-CA survival rate compared to saline (86% vs. 45%). D-NAC treatment also significantly improved gross neurological score within 4 h of treatment (p < 0.05) and continued to show improvement at 48 h (p < 0.05). Specifically, there was a substantial impairment in motor responses after CA, which was subsequently improved with D-NAC treatment (p < 0.05). D-NAC also mitigated hippocampal cell density loss seen post-CA in the CA1 and CA3 subregions (p < 0.001). These results demonstrate that early therapeutic intervention even with a single D-NAC bolus results in a robust sustainable improvement in long-term survival, short-term motor deficits, and neurological recovery. Our current work lays the groundwork for a clinically relevant therapeutic approach to treating post-CA syndrome.

5.
Front Psychiatry ; 13: 1041277, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36704743

RESUMO

Introduction: Selective serotonin reuptake inhibitor (SSRI) antidepressants represent first-line pharmacological treatment for a variety of neuropsychiatric illnesses, including major depressive disorder (MDD), anxiety, and post-traumatic stress disorder (PTSD), which show high rates of comorbidity. SSRIs have a delayed onset of action. Most patients do not show significant effects until 4-8 weeks of continuous treatment, have impairing side effects and as many as 40% of patients do not respond. Methylone (3,4-methylenedioxy-N-methylcathinone; MDMC, ßk-MDMA, M1) is a rapid-acting entactogen that showed significant benefit in a clinical case series of PTSD patients and was well-tolerated in two Phase 1 studies of healthy volunteers. Based on these early observations in humans, in the current study we tested the hypothesis that methylone has antidepressant-like and anxiolytic effects in preclinical tests. Methods: For all studies, 6-8-week-old male Sprague Dawley rats (N = 6-16) were used. We employed the Forced Swim Test (FST), a classic and widely used screen for antidepressants, to explore the effects of methylone and to probe dose-response relationships, durability of effect, and potential interactions with combined SSRI treatment. We compared the effect of methylone with the prototypical SSRI fluoxetine. Results: Three doses of fluoxetine (10 mg/kg) given within 24 h before FST testing caused a 50% reduction in immobility compared with controls that lasted less than 24 h. In contrast, a single dose of methylone (5-30 mg/kg) administered 30 min prior to testing produced a rapid, robust, and durable antidepressant-like response in the FST, greater in magnitude than fluoxetine. Immobility was reduced by nearly 95% vs. controls and effects persisted for at least 72 h after a single dose (15 mg/kg). Effects on swimming and climbing behavior in the FST, which reflect serotonergic and noradrenergic activity, respectively, were consistent with studies showing that methylone is less serotoninergic than MDMA. Fluoxetine pretreatment did not change methylone's antidepressant-like effect in the FST, suggesting the possibility that the two may be co-administered. In addition, methylone (5-30 mg/kg) exhibited anxiolytic effects measured as increased time spent in the center of an open field. Discussion: Taken together, and consistent with initial clinical findings, our study suggests that methylone may have potential for treating depression and anxiety.

6.
Risk Anal ; 30(12): 1842-56, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20723144

RESUMO

This article presents the results of a comparative environmental risk-ranking exercise that was conducted in the United Arab Emirates (UAE) to inform a strategic planning process led by the Environment Agency-Abu Dhabi (EAD). It represents the first national-level application of a deliberative method for comparative risk ranking first published in this journal. The deliberative method involves a five-stage process that includes quantitative risk assessment by experts and deliberations by groups of stakeholders. The project reported in this article considered 14 categories of environmental risks to health identified through discussions with EAD staff: ambient and indoor air pollution; drinking water contamination; coastal water pollution; soil and groundwater contamination; contamination of fruits, vegetables, and seafood; ambient noise; stratospheric ozone depletion; electromagnetic fields from power lines; health impacts from climate change; and exposure to hazardous substances in industrial, construction, and agricultural work environments. Results from workshops involving 73 stakeholders who met in five separate groups to rank these risks individually and collaboratively indicated strong consensus that outdoor and indoor air pollution are the highest priorities in the UAE. Each of the five groups rated these as being among the highest risks. All groups rated soil and groundwater contamination as being among the lowest risks. In surveys administered after the ranking exercises, participants indicated that the results of the process represented their concerns and approved of using the ranking results to inform policy decisions. The results ultimately shaped a strategic plan that is now being implemented.


Assuntos
Exposição Ambiental , Poluentes Ambientais , Humanos , Medição de Risco , Emirados Árabes Unidos/epidemiologia
7.
Genet Med ; 11(7): 510-7, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19478682

RESUMO

PURPOSE: The goal of this project was to assess genetic/genomic content in electronic health records. METHODS: Semistructured interviews were conducted with key informants. Questions addressed documentation, organization, display, decision support and security of family history and genetic test information, and challenges and opportunities relating to integrating genetic/genomics content in electronic health records. RESULTS: There were 56 participants: 10 electronic health record specialists, 18 primary care clinicians, 16 medical geneticists, and 12 genetic counselors. Few clinicians felt their electronic record met their current genetic/genomic medicine needs. Barriers to integration were mostly related to problems with family history data collection, documentation, and organization. Lack of demand for genetics content and privacy concerns were also mentioned as challenges. Data elements and functionality requirements that clinicians see include: pedigree drawing; clinical decision support for familial risk assessment and genetic testing indications; a patient portal for patient-entered data; and standards for data elements, terminology, structure, interoperability, and clinical decision support rules. Although most said that there is little impact of genetics/genomics on electronic records today, many stated genetics/genomics would be a driver of content in the next 5-10 years. CONCLUSIONS: Electronic health records have the potential to enable clinical integration of genetic/genomic medicine and improve delivery of personalized health care; however, structured and standardized data elements and functionality requirements are needed.


Assuntos
Privacidade Genética/normas , Genética Médica/métodos , Sistemas Computadorizados de Registros Médicos/organização & administração , Sistemas Computadorizados de Registros Médicos/normas , Atitude do Pessoal de Saúde , Entrevistas como Assunto , Sistemas Computadorizados de Registros Médicos/tendências , Padrões de Referência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...