Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioinformatics ; 39(7)2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37449883

RESUMO

SUMMARY: Viral genes, that are frequently small genes and/or with large overlaps, are still difficult to predict accurately. To help predict all genes in viral genomes, we provide CodingDiv that detects SNP-level microdiversity of all potential coding regions, using metagenomic reads and/or similar sequences from external databases. Protein coding regions can then be identified as the ones containing more synonymous SNPs than unfavorable nonsynonymous substitutions SNPs. AVAILABILITY AND IMPLEMENTATION: CodingDiv is released under the GPL license. Source code is available at https://github.com/ericolo/codingDiv. The software can be installed and used through a docker container.


Assuntos
Polimorfismo de Nucleotídeo Único , Software , Bases de Dados Factuais , Genoma Viral , Metagenômica
2.
Virus Evol ; 9(1): veac123, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36694818

RESUMO

Small circular single-stranded DNA viruses of the Microviridae family are both prevalent and diverse in all ecosystems. They usually harbor a genome between 4.3 and 6.3 kb, with a microvirus recently isolated from a marine Alphaproteobacteria being the smallest known genome of a DNA phage (4.248 kb). A subfamily, Amoyvirinae, has been proposed to classify this virus and other related small Alphaproteobacteria-infecting phages. Here, we report the discovery, in meta-omics data sets from various aquatic ecosystems, of sixteen complete microvirus genomes significantly smaller (2.991-3.692 kb) than known ones. Phylogenetic analysis reveals that these sixteen genomes represent two related, yet distinct and diverse, novel groups of microviruses-amoyviruses being their closest known relatives. We propose that these small microviruses are members of two tentatively named subfamilies Reekeekeevirinae and Roodoodoovirinae. As known microvirus genomes encode many overlapping and overprinted genes that are not identified by gene prediction software, we developed a new methodology to identify all genes based on protein conservation, amino acid composition, and selection pressure estimations. Surprisingly, only four to five genes could be identified per genome, with the number of overprinted genes lower than that in phiX174. These small genomes thus tend to have both a lower number of genes and a shorter length for each gene, leaving no place for variable gene regions that could harbor overprinted genes. Even more surprisingly, these two Microviridae groups had specific and different gene content, and major differences in their conserved protein sequences, highlighting that these two related groups of small genome microviruses use very different strategies to fulfill their lifecycle with such a small number of genes. The discovery of these genomes and the detailed prediction and annotation of their genome content expand our understanding of ssDNA phages in nature and are further evidence that these viruses have explored a wide range of possibilities during their long evolution.

3.
Virus Evol ; 8(2): veac070, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36533142

RESUMO

The Microviridae family represents one of the major clades of single-stranded DNA (ssDNA) phages. Their cultivated members are lytic and infect Proteobacteria, Bacteroidetes, and Chlamydiae. Prophages have been predicted in the genomes from Bacteroidales, Hyphomicrobiales, and Enterobacteriaceae and cluster within the 'Alpavirinae', 'Amoyvirinae', and Gokushovirinae. We have isolated 'Ascunsovirus oldenburgi' ICBM5, a novel phage distantly related to known Microviridae. It infects Sulfitobacter dubius SH24-1b and uses both a lytic and a carrier-state life strategy. Using ICBM5 proteins as a query, we uncovered in publicly available resources sixty-five new Microviridae prophages and episomes in bacterial genomes and retrieved forty-seven environmental viral genomes (EVGs) from various viromes. Genome clustering based on protein content and phylogenetic analysis showed that ICBM5, together with Rhizobium phages, new prophages, episomes, and EVGs cluster within two new phylogenetic clades, here tentatively assigned the rank of subfamily and named 'Tainavirinae' and 'Occultatumvirinae'. They both infect Rhodobacterales. Occultatumviruses also infect Hyphomicrobiales, including nitrogen-fixing endosymbionts from cosmopolitan legumes. A biogeographical assessment showed that tainaviruses and occultatumviruses are spread worldwide, in terrestrial and marine environments. The new phage isolated here sheds light onto new and diverse branches of the Microviridae tree, suggesting that much of the ssDNA phage diversity remains in the dark.

4.
Med Sci (Paris) ; 38(12): 999-1007, 2022 Dec.
Artigo em Francês | MEDLINE | ID: mdl-36692279

RESUMO

Despite their large number, viruses present in the environment remain largely unknown. Metagenomic approaches, targeting viruses specifically or not, have allowed us a better understanding of the composition of natural viral communities, with Caudoviricetes, Microviridae, Cressdnaviricota or Phycodnaviridae being the most frequently found viral groups. Metagenomes are gradually revealing the extent of the diversity of these groups and their structure, highlighting the large number of species, genera and even viral families, most of which being seen for the first time. Within these groups, the gene content, infected hosts and inhabited ecosystems are often consistent with the evolutionary history traced with marker genes. Thus, the diversity of viruses and their genes is more a reflection of their ancient origin and long coevolution with their hosts than of their ability to mutate rapidly.


Title: Mieux connaître les virus présents sur Terre grâce aux métagénomes. Abstract: En dépit de leur très grand nombre, les virus qui peuplent l'environnement restent largement méconnus. Les approches de métagénomique ont permis depuis vingt ans de mieux connaître la composition des communautés virales naturelles, notamment les groupes viraux les plus fréquemment trouvés, et de lever peu à peu le voile sur l'étendue de leur diversité, révélant le grand nombre d'espèces, de genres et même de familles virales, pour la plupart identifiés pour la première fois. Au sein de ces groupes, le contenu en gènes, les hôtes infectés et les écosystèmes habités sont souvent cohérents avec l'histoire évolutive, reflet de l'origine très ancienne des virus et de leur très longue coévolution avec leurs hôtes, plus que de leur capacité à muter rapidement.


Assuntos
Metagenoma , Vírus , Humanos , Ecossistema , Filogenia , Vírus/genética , Evolução Biológica , Genoma Viral
5.
Int J Mol Sci ; 22(24)2021 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-34948244

RESUMO

The virome associated with the corkscrew shaped bacterium Leptospira, responsible for Weil's disease, is scarcely known, and genetic tools available for these bacteria remain limited. To reduce these two issues, potential transposable prophages were searched in Leptospiraceae genomes. The 236 predicted transposable prophages were particularly abundant in the most pathogenic leptospiral clade, being potentially involved in the acquisition of virulent traits. According to genomic similarities and phylogenies, these prophages are distantly related to known transposable phages and are organized into six groups, one of them encompassing prophages with unusual TA-TA ends. Interestingly, structural and transposition proteins reconstruct different relationships between groups, suggesting ancestral recombinations. Based on the baseplate phylogeny, two large clades emerge, with specific gene-contents and high sequence divergence reflecting their ancient origin. Despite their high divergence, the size and overall genomic organization of all prophages are very conserved, a testimony to the highly constrained nature of their genomes. Finally, similarities between these prophages and the three known non-transposable phages infecting L. biflexa, suggest gene transfer between different Caudovirales inside their leptospiral host, and the possibility to use some of the transposable prophages in that model strain.


Assuntos
Genoma Bacteriano , Genoma Viral , Leptospira , Filogenia , Prófagos/genética , Doença de Weil/genética , Humanos , Leptospira/genética , Leptospira/virologia , Análise de Sequência de DNA
6.
NAR Genom Bioinform ; 3(3): lqab067, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34377978

RESUMO

Viruses are abundant, diverse and ancestral biological entities. Their diversity is high, both in terms of the number of different protein families encountered and in the sequence heterogeneity of each protein family. The recent increase in sequenced viral genomes constitutes a great opportunity to gain new insights into this diversity and consequently urges the development of annotation resources to help functional and comparative analysis. Here, we introduce PHROG (Prokaryotic Virus Remote Homologous Groups), a library of viral protein families generated using a new clustering approach based on remote homology detection by HMM profile-profile comparisons. Considering 17 473 reference (pro)viruses of prokaryotes, 868 340 of the total 938 864 proteins were grouped into 38 880 clusters that proved to be a 2-fold deeper clustering than using a classical strategy based on BLAST-like similarity searches, and yet to remain homogeneous. Manual inspection of similarities to various reference sequence databases led to the annotation of 5108 clusters (containing 50.6 % of the total protein dataset) with 705 different annotation terms, included in 9 functional categories, specifically designed for viruses. Hopefully, PHROG will be a useful tool to better annotate future prokaryotic viral sequences thus helping the scientific community to better understand the evolution and ecology of these entities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...