Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Signal Behav ; 7(8): 999-1003, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22751358

RESUMO

Daylight UV-B (UV-B) radiation (280-315 nm) is, because of its photochemical effects and potential destructive impact, an important environmental factor for plants. After decades of fruitless attempts, a receptor molecule, UVR8, for sensing of ambient UV-B radiation by plants has been characterized, and the initial steps in signal transduction have been identified. There are, however, other signaling pathways, and there are apparent contradictions in the literature. There is still much to find out about the complex signaling network in plants for processing of information about the daylight surrounding them.


Assuntos
Transdução de Sinal Luminoso/efeitos da radiação , Plantas/efeitos da radiação , Raios Ultravioleta , Dano ao DNA , Reparo do DNA/efeitos da radiação , Proteínas de Plantas/metabolismo
2.
J Photochem Photobiol B ; 66(1): 30-6, 2002 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-11849980

RESUMO

The effect of enhanced UV-B radiation on buckwheat (Fagopyrum esculentum Moench. variety 'Darja'), an important high elevation crop, was studied in order to estimate its vulnerability in changing UV-B environment. Plants were grown in outdoor experiments from July to October under reduced and ambient UV-B levels, and an UV-B level simulating 17% ozone depletion in Ljubljana. During the development the following parameters were monitored: light saturated photosynthetic activity, transpiration, potential and effective photochemical efficiencies of photosystem II, the contents of photosynthetic pigments and methanol soluble UV-B absorbing compounds. At the end of the experiment, growth rate and production of seeds were estimated. In the following growth season the seeds collected from plants exposed to different UV-B treatments were tested for germination capacity. Total UV-B absorbing compounds during plant development were increased by UV-B radiation, photosynthetic pigments (chlorophyll a and b and carotenoids) decreased. Photosynthetic rate was lowered in an early stage of development. UV-B treatment resulted in the increase in the transpiration rate and consequently the decrease in water use efficiency (WUE). The disturbances in water economy and in photosynthesis affected the reproduction potential negatively; the production of seeds in plants cultivated under ambient and enhanced UV-B was 57 and 39% of the production of specimens treated with reduced UV-B, respectively. The germination of seeds collected from treated plants revealed on average about 95% success, independently of the treatment, but the time needed for germination was the shortest for seeds developed under enhanced UV-B level treatment. Enhanced UV-B radiation affected water relations and production of buckwheat, but not the potential of seeds for germination.


Assuntos
Clorofila/efeitos da radiação , Fagopyrum/efeitos da radiação , Raios Ultravioleta , Clorofila/metabolismo , Clorofila A , Produtos Agrícolas , Fagopyrum/crescimento & desenvolvimento , Fotossíntese/efeitos da radiação , Transpiração Vegetal/efeitos da radiação , Sementes/fisiologia , Sementes/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...