Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Diet Suppl ; 13(4): 402-19, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26716793

RESUMO

Cyclophosphamide (CPA) is a widely used anticancer chemotherapeutic agent and its toxicity has been associated with its toxic metabolites phosphormide mustard. Therefore, the ameliorative effect of Gallic acid against neurotoxicity was examined in this study. Sixty rats were grouped into 10 rats per group. Group 1 received saline orally. Group 2 received CPA at 100 mg/kg single dose intraperitoneally on day 1. Groups 3 and 4 were treated with Gallic acid (GA) at 60 and 120 mg/kg body weight only for 10 days and also received a single dose of CPA (100 mg/kg) intraperitoneally on day 1, respectively. Rats in groups 5 and 6 received GA at 60 and 120 mg/kg body weight only for 10 days. Groups 3, 4, 5, and 6 received GA orally. The cerebellar and cerebral malondialdehyde (MDA) contents and hydrogen peroxide generation were significantly (p < .05) elevated. The cerebellar and cerebral catalase (CAT), superoxide dismutase and glutathione-S-transferase (GST) activities were significantly (p < .05) reduced in CPA treated group. The activity of glutathione peroxidase (GPx) was significantly increased in rats that were treatment with CPA. Also, nitrite content was significantly elevated in the brain of rats that received the toxic dose of CPA. All these findings suggest that treatment with GA (60 and 120 mg/kg) ameliorated the neurotoxicity induced by CPA via reduction of oxidative stress and increase in antioxidant defense system. Combining all, chemotherapeutic agents with structure/function similar to GA could be of potential benefit to the pharmaceutical industries as an adjuvant in chemotherapy with little or no side effects.


Assuntos
Antioxidantes/farmacologia , Ciclofosfamida/toxicidade , Ácido Gálico/farmacologia , Fármacos Neuroprotetores/farmacologia , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Catalase/metabolismo , Cerebelo/efeitos dos fármacos , Cerebelo/metabolismo , Cérebro/efeitos dos fármacos , Cérebro/metabolismo , Glutationa Peroxidase/metabolismo , Glutationa Transferase/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Malondialdeído/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Wistar , Superóxido Dismutase/metabolismo
2.
Pharmacognosy Res ; 7(3): 268-76, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26130939

RESUMO

BACKGROUND: Arsenic intoxication is known to produce symptoms including diarrhea and vomiting, which are indications of gastrointestinal dysfunction. OBJECTIVE: We investigated whether Kolaviron (KV) administration protected against sodium arsenite (NaAsO2)-induced damage to gastric and intestinal epithelium in rats. MATERIALS AND METHODS: Control rats (Group I) were given a daily oral dose of corn oil. Rats in other groups were given a single dose of NaAsO2 (100 mg/kg; intraperitoneal) alone (Group II) or after pretreatment for 7 days with KV at 100 mg/kg (Group III) and 200 mg/kg (Group IV). Rats were sacrificed afterward and portions of the stomach, small intestine and colon were processed for histopathological examination. Hydrogen peroxide, reduced glutathione, malondialdehyde (MDA) concentrations as well as activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX), glutathione S-transferase (GST) and myeloperoxidase (MPO) were measured in the remaining portions of the different gastrointestinal tract (GIT) segments. RESULTS: NaAsO2 caused significant increases (P < 0.05) in MDA levels and MPO activity, with significant reductions (P < 0.05) in GST, GPX, CAT and SOD activities in the stomach and intestines. KV significantly reversed the changes (P < 0.05) in a largely dose-dependent manner. The different segments had marked inflammatory cellular infiltration, with hyperplasia of the crypts, which occurred to much lesser degrees with KV administration. CONCLUSION: The present findings showed that KV might be a potent product for mitigating NaAsO2 toxicity in the GIT.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...