Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioengineering (Basel) ; 11(4)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38671772

RESUMO

Traumatic heterotopic ossification (HO) is frequently observed in Service Members following combat-related trauma. Estimates suggest that ~65% of wounded warriors who suffer limb loss or major extremity trauma will experience some type of HO formation. The development of HO delays rehabilitation and can prevent the use of a prosthetic. To date there are limited data to suggest a standard mechanism for preventing HO. This may be due to inadequate animal models not producing a similar bone structure as human HO. We recently showed that traumatic HO growth is possible in an ovine model. Within that study, we demonstrated that 65% of sheep developed a human-relevant hybrid traumatic HO bone structure after being exposed to a combination of seven combat-relevant factors. Although HO formed, we did not determine which traumatic factor contributed most. Therefore, in this study, we performed individual and various combinations of surgical/traumatic factors to determine their individual contribution to HO growth. Outcomes showed that the presence of mature biofilm stimulated a large region of bone growth, while bone trauma resulted in a localized bone response as indicated by jagged bone at the linea aspera. However, it was not until the combinatory factors were included that an HO structure similar to that of humans formed more readily in 60% of the sheep. In conclusion, data suggested that traumatic HO growth can develop following various traumatic factors, but a combination of known instigators yields higher frequency size and consistency of ectopic bone.

2.
Bone Rep ; 15: 101127, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34584904

RESUMO

Heterotopic ossification (HO) refers to ectopic bone formation, typically in residual limbs following trauma and injury. A review of injuries from Operation Iraqi Freedom (OIF) and Operation Enduring Freedom (OEF) indicated that approximately 70% of war wounds involved the musculoskeletal system, largely in part from the use of improvised explosive devices (IED) and rocket-propelled grenades (RPG). HO is reported to occur in approximately 63%-65% of wounded warriors from OIF and OEF. Symptomatic HO may delay rehabilitation regimens since it often requires modifications to prosthetic limb componentry and socket size. There is limited evidence indicating a mechanism for preventing HO. This may be due to inadequate models, which do not produce HO bone structure that is morphologically similar to HO samples obtained from wounded warfighters injured in theatre. We hypothesized that using a high-power blast of air (shockwave) and simulated battlefield trauma (i.e. bone damage, tourniquet, bacteria, negative pressure wound therapy) in a large animal model, HO would form and have similar morphology to ectopic bone observed in clinical samples. Initial radiographic and micro-computed tomography (CT) data demonstrated ectopic bone growth in sheep 24 weeks post-procedure. Advanced histological and backscatter electron (BSE) analyses showed that 5 out of 8 (63%) sheep produced HO with similar morphology to clinical samples. We conclude that not all ectopic bone observed by radiograph or micro-CT in animal models is HO. Advanced histological and BSE analyses may improve confirmation of HO presence and morphology, which we demonstrated can be produced in a large animal model.

3.
Acta Biomater ; 93: 36-49, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-30710710

RESUMO

Prosthetic joint infection (PJI) is a well-known and persisting problem. Active release coatings have promise to provide early protection to an implant by eradicating small colony biofilm contaminants or planktonic bacteria that can form biofilm. Traditional antibiotics can be limited as active release agents in that they have limited effect against biofilms and develop resistance at sub-lethal concentrations. A unique first-in-class compound (CZ-01127) was assessed as the active release agent in a silicone (Si)-based coating to prevent PJI in a sheep model of joint space infection. Titanium (Ti) plugs contained a porous coated Ti (PCTi) region and polymer-coated region. Plugs were implanted into a femoral condyle of sheep to assess the effect of the Si polymer on cancellous bone ingrowth, the effect of CZ-01127 on bone ingrowth, and the ability of CZ-01127 to prevent PJI. Microbiological results showed that CZ-01127 was able to eradicate bacteria in the local region of the implanted plugs. Data further showed that Si did not adversely affect bone ingrowth. However, bacteria that reached the joint space (synovium) were not fully eradicated. Outcomes suggested that the CZ-01127 coating provided local protection to the implant system in a challenging model, the design of which could be beneficial for testing future antimicrobial therapies for PJI. STATEMENT OF SIGNIFICANCE: Periprosthetic joint infection (PJI) is now commonplace, and constitutes an underlying problem that patients and physicians face. Active release antibiotic coatings have potential to prevent these infections. Traditional antibiotics are limited in their ability to eradicate bacteria that reside in biofilms, and are more susceptible to resistance development. This study addressed these limitations by testing the efficacy of a unique antimicrobial compound in a coating that was tested in a challenging sheep model of PJI. The unique coating was able to eradicate bacteria and prevent infection in the environment adjacent to the implant. Bacteria that escaped into the joint space still caused infection, yet benchmark data can be used to optimize the coating and translate it toward clinical use.


Assuntos
Antibacterianos , Materiais Revestidos Biocompatíveis , Infecções Relacionadas à Prótese , Espermidina/análogos & derivados , Animais , Antibacterianos/química , Antibacterianos/farmacocinética , Antibacterianos/farmacologia , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacocinética , Materiais Revestidos Biocompatíveis/farmacologia , Modelos Animais de Doenças , Implantes de Medicamento/química , Implantes de Medicamento/farmacocinética , Implantes de Medicamento/farmacologia , Feminino , Porosidade , Infecções Relacionadas à Prótese/tratamento farmacológico , Infecções Relacionadas à Prótese/microbiologia , Infecções Relacionadas à Prótese/patologia , Ovinos , Espermidina/química , Espermidina/farmacocinética , Espermidina/farmacologia
4.
J Biomed Mater Res B Appl Biomater ; 106(2): 578-588, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28244245

RESUMO

Despite four decades of research on material and porous coatings intended for cementless fixation in total joint replacement (TJR), aseptic mechanical loosening unrelated to particulate disease remains a concern. One main question asked is how translational are the animal models used to screen material and porous coatings intended for TJR fixation? Another question is how specific are the translational models at targeting the cementless TJR components that have the highest loosening rates? The hypothesis tested was that the bone response would be different between the two bone types-cortical and cancellous-used in translational animal modeling. The osteoblastic jumping distance (OJD), percent ingrowth, and appositional bone response were measured to assess the response between cancellous and cortical bone at two different anatomical locations, within the same limb. With 500 µm inset, titanium porous coated implants and negative control dinosaur (coprolite) implants were investigated. The data demonstrated that cortical bone had 7 times OJD than cancellous bone. The bone ingrowth data demonstrated 16 times higher bone ingrowth than the cancellous bone. Light microscopy showed predominately fibrous tissue attachment (98%) in cancellous bone. Screening of materials intended for TJR require a translational model predictive of the clinical condition. The results demonstrated that the transcortical model rendered false-positive data. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 578-588, 2018.


Assuntos
Artroplastia de Substituição , Osso Esponjoso/efeitos dos fármacos , Materiais Revestidos Biocompatíveis/farmacologia , Osso Cortical/efeitos dos fármacos , Titânio/farmacologia , Animais , Materiais Revestidos Biocompatíveis/química , Modelos Animais de Doenças , Extremidades/cirurgia , Feminino , Humanos , Implantes Experimentais , Porosidade , Ovinos/cirurgia , Titânio/química
5.
Plast Reconstr Surg ; 134(5): 700e-704e, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25285677

RESUMO

This study was designed to evaluate the SERI Surgical Scaffold, a silk-derived bioresorbable scaffold, in an ovine model of two-stage breast reconstruction. Sheep were implanted bilaterally with either SERI or sham sutures during the stage 1 procedure. The SERI group underwent an exchange procedure for a breast implant at 3 months; animals in the sham group were killed at 3 months. The sham samples were significantly weaker than the SERI plus tissue samples by 3 months. At all endpoints, SERI plus tissue samples were greater than or equal to 150 percent of native ovine fascial strength. Histologic evaluation of SERI samples showed evidence of bioresorption through 12 months. SERI provided adequate soft-tissue support with progressive bioresorption. By 12 months, newly formed tissue had assumed the majority of load-bearing responsibility.


Assuntos
Implantes Absorvíveis , Implantes de Mama , Mamoplastia/métodos , Alicerces Teciduais , Animais , Fenômenos Biomecânicos , Feminino , Mamoplastia/efeitos adversos , Modelos Animais , Distribuição Aleatória , Sensibilidade e Especificidade , Ovinos , Carneiro Doméstico , Resistência à Tração , Dispositivos para Expansão de Tecidos , Cicatrização/fisiologia
6.
J Foot Ankle Surg ; 49(5): 438-41, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20797586

RESUMO

The rate of rerupture of repaired Achilles tendon in young and athletic populations remains high despite improvement in surgical techniques, suture design, and postsurgical management. Acellular biological matrices can be used to enhance the immediate strength of repaired tendons and to serve as scaffolds for cell in-growth and constructive tissue remodeling. A number of commercially available matrices have been used clinically, albeit with varying degrees of success and failure. The disparity is likely attributable to the different physical and biochemical properties of individual matrices. In this study, we investigated the biomechanical characteristics of 2 different acellular collagen matrices, namely TissueMend and GraftJacket, using a sheep Achilles tendon repair model. Static and cyclic creep, cyclic and linear construct stiffness, maximum load to failure, and displacement at maximum load were determined at time zero. We found that the maximum load to failure, displacement, and ultimate failure mode were similar between tendons augmented with either acellular collagen matrix; however, TissueMend augmentation yielded lower creep and smaller construct elongation than did GraftJacket. The results indicated that the strength of TissueMend-augmented tendons and GraftJacket-augmented tendons was not statistically significantly different, although tendons augmented with TissueMend displayed greater stiffness, which may be clinically advantageous in the restoration of ruptured tendons.


Assuntos
Tendão do Calcâneo/cirurgia , Materiais Biocompatíveis , Colágeno , Teste de Materiais , Tendão do Calcâneo/lesões , Animais , Fenômenos Biomecânicos , Modelos Animais , Ovinos , Engenharia Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...