Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem A ; 128(11): 2162-2168, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38470438

RESUMO

We employ amplitude- and phase-resolved second harmonic generation experiments to probe interactions of fused silica:aqueous interfaces with Al3+, Mg2+, and Na+ cations at pH 4 and as a function of metal cation concentration. We quantify the second-order nonlinear susceptibility and the total interfacial potential in the presence and absence of a 10 mM screening electrolyte to understand the influence of charge screening on cation adsorption. Strong cation:surface interactions are observed in the absence of the screening electrolyte. The total potential is then employed to estimate the total number of absorbed cations cm-2. The contributions to the total potential from the bound and mobile charges were separated using Gouy-Chapman-Stern model estimates. All three cations bind fully reversibly, indicating physisorption as the mode of interaction. Of the isotherm models tested, the Kd adsorption model fits the data with binding constants of 3-30 and ∼300 mol-1 for the low (<0.1 mM) and high (0.1-3 mM) concentration regimes, corresponding to adsorption free energies of -13 to -18 and -24 kJ mol-1 at room temperature, respectively. The maximum surface coverages are around 1013 cations cm-2, matching the number of deprotonated silanol groups on silica at pH 4. Clear signs of decoupled Stern and diffuse layer nonlinear optical responses are observed and found to be cation-specific.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...