Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
J Autoimmun ; 103: 102276, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31104947

RESUMO

Goodpasture's disease manifests as rapidly progressive glomerulonephritis. Current immunosuppressive treatments do not specifically target the pathological immune response and have significant side effects. Like most autoimmune diseases, the strongest genetic association is with the HLA alleles. Inheritance of HLA-DR15 confers susceptibility, and structure-function studies have shown that HLA-DR15 plays a causative role in activating autoreactive pro-inflammatory T cells. Thus, specific inhibition of HLA-DR15 would provide a targeted therapeutic approach. We hypothesised that PV-267, an HLA-DR15-specific inhibitor, would effectively block HLA-DR15 presentation of the dominant epitope, attenuate the activation of autoreactive T cells, and limit disease. Using humanised HLA-DR15 transgenic mice, α3135-145-specific, pro-inflammatory T cell recall responses were measured using IFN-γ and IL-17A ELISPOTs and by proliferation assay. To determine if PV-267 could limit disease, experimental autoimmune anti-GBM glomerulonephritis was induced in HLA-DR15 transgenic mice (on an Fcgr2b-/- background), and functional and histological disease endpoints were measured. PV-267 effectively inhibited α3135-145-specific immune responses and disease development. Mice treated prior to immunization with α3135-145 had reduced α3135-145-specific recall responses, and limited disease by albuminuria, histological glomerular injury, IgG deposition, and inflammatory cell infiltrates. PV-267 treatment commencing after the onset of active anti-α3(IV)NC1 autoimmunity attenuated functional and histological renal injury. When treatment was administered after disease was established, PV-267 limited the severity of histological injury. In conclusion, HLA-DR15 inhibition attenuates α3(IV)NC1-specific pro-inflammatory responses and could be used as an adjunct therapy for anti-GBM disease.


Assuntos
Doença Antimembrana Basal Glomerular/terapia , Autoantígenos/imunologia , Colágeno Tipo IV/imunologia , Glomerulonefrite/terapia , Subtipos Sorológicos de HLA-DR/metabolismo , Rim/efeitos dos fármacos , Peptídeos/uso terapêutico , Linfócitos T/imunologia , Animais , Doença Antimembrana Basal Glomerular/genética , Células Cultivadas , Modelos Animais de Doenças , Feminino , Predisposição Genética para Doença , Glomerulonefrite/genética , Subtipos Sorológicos de HLA-DR/genética , Humanos , Rim/patologia , Ativação Linfocitária , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Peptídeos/imunologia , Ligação Proteica , Receptores de IgG/genética
3.
Cell Cycle ; 16(19): 1790-1799, 2017 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-28489985

RESUMO

Anti-cancer small molecule ONC201 upregulates the integrated stress response (ISR) and acts as a dual inactivator of Akt/ERK, leading to TRAIL gene activation. ONC201 is under investigation in multiple clinical trials to treat patients with cancer. Given the unique imipridone core chemical structure of ONC201, we synthesized a series of analogs to identify additional compounds with distinct therapeutic properties. Several imipridones with a broad range of in vitro potencies were identified in an exploration of chemical derivatives. Based on in vitro potency in human cancer cell lines and lack of toxicity to normal human fibroblasts, imipridones ONC206 and ONC212 were prioritized for further study. Both analogs inhibited colony formation, and induced apoptosis and downstream signaling that involves the integrated stress response and Akt/ERK, similar to ONC201. Compared to ONC201, ONC206 demonstrated improved inhibition of cell migration while ONC212 exhibited rapid kinetics of activity. ONC212 was further tested in >1000 human cancer cell lines in vitro and evaluated for safety and anti-tumor efficacy in vivo. ONC212 exhibited broad-spectrum efficacy at nanomolar concentrations across solid tumors and hematological malignancies. Skin cancer emerged as a tumor type with improved efficacy relative to ONC201. Orally administered ONC212 displayed potent anti-tumor effects in vivo, a broad therapeutic window and a favorable PK profile. ONC212 was efficacious in vivo in BRAF V600E melanoma models that are less sensitive to ONC201. Based on these findings, ONC212 warrants further development as a drug candidate. It is clear that therapeutic utility extends beyond ONC201 to include additional imipridones.


Assuntos
Antineoplásicos/farmacologia , Regulação Neoplásica da Expressão Gênica , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Melanoma/tratamento farmacológico , Neoplasias Cutâneas/tratamento farmacológico , Animais , Antineoplásicos/síntese química , Antineoplásicos/farmacocinética , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Compostos Heterocíclicos de 4 ou mais Anéis/síntese química , Compostos Heterocíclicos de 4 ou mais Anéis/farmacocinética , Humanos , Imidazóis , Melanoma/genética , Melanoma/metabolismo , Melanoma/patologia , Camundongos , Proteína Quinase 1 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Especificidade de Órgãos , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Piridinas , Pirimidinas , Transdução de Sinais , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia , Relação Estrutura-Atividade , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Int J Biochem Cell Biol ; 80: 163-172, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27732889

RESUMO

Nevertheless, a nonviable sperm population is present in the cauda epididymidis of many species. Degenerating spermatozoa release enzymes that could have detrimental effects on the viability of neighboring cells, and they are source of autoantigens that induce an autoimmune response if they escape the blood-epididymis barrier. Does the epididymis have specialized protective mechanism(s) to segregate the viable sperm population from defective spermatozoa? Previously, we identified a fibrinogen-like protein-2 (fgl2) that specifically binds to and polymerizes into a cocoon-like complex coating defective spermatozoa and sperm fragments. The objective of the present study is to identify the subunit composition of the fgl2-containing oligomers both in the soluble and cocoon-like complex. Our proteomic studies indicate that the 260/280kDa oligomers (termed eFGL) contain two distinct disulfide-linked subunits; 64kDa fgl2 and 33kDa fgl1. Utilizing a PCR-based cloning strategy, the 33kDa polypeptide has been identified as fibrinogen-like protein-1 (fgl1). Immunocytochemical studies revealed that fgl1 selectively binds to defective spermatozoa in the cauda epididymidis. Northern blot analysis and in situ hybridization demonstrated the high expression of fgl1 in the principal cells of the proximal cauda epididymidis. Co-immunoprecipitation analyses of cauda epididymal fluid, using anti-fgl2, demonstrate that both fgl1 and fgl2 are present in the soluble eFGL. Our study is the first to show an association of fgl1 and fgl2 both in the soluble and in the sperm-associated eFGL. We conclude that our results provide new insights into the mechanisms by which the potentially unique epididymal protein functions in the recognition and elimination of defective spermatozoa.


Assuntos
Dissulfetos/química , Fibrinogênio/química , Fibrinogênio/metabolismo , Multimerização Proteica , Subunidades Proteicas/metabolismo , Espermatozoides/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Sobrevivência Celular , Cricetinae , Fibrinogênio/genética , Regulação da Expressão Gênica , Masculino , Especificidade de Órgãos , Ligação Proteica , Estrutura Quaternária de Proteína , Espermatozoides/citologia , Especificidade por Substrato
5.
Oncotarget ; 7(45): 74380-74392, 2016 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-27602582

RESUMO

ONC201 is the founding member of a novel class of anti-cancer compounds called imipridones that is currently in Phase II clinical trials in multiple advanced cancers. Since the discovery of ONC201 as a p53-independent inducer of TRAIL gene transcription, preclinical studies have determined that ONC201 has anti-proliferative and pro-apoptotic effects against a broad range of tumor cells but not normal cells. The mechanism of action of ONC201 involves engagement of PERK-independent activation of the integrated stress response, leading to tumor upregulation of DR5 and dual Akt/ERK inactivation, and consequent Foxo3a activation leading to upregulation of the death ligand TRAIL. ONC201 is orally active with infrequent dosing in animals models, causes sustained pharmacodynamic effects, and is not genotoxic. The first-in-human clinical trial of ONC201 in advanced aggressive refractory solid tumors confirmed that ONC201 is exceptionally well-tolerated and established the recommended phase II dose of 625 mg administered orally every three weeks defined by drug exposure comparable to efficacious levels in preclinical models. Clinical trials are evaluating the single agent efficacy of ONC201 in multiple solid tumors and hematological malignancies and exploring alternative dosing regimens. In addition, chemical analogs that have shown promise in other oncology indications are in pre-clinical development. In summary, the imipridone family that comprises ONC201 and its chemical analogs represent a new class of anti-cancer therapy with a unique mechanism of action being translated in ongoing clinical trials.


Assuntos
Antineoplásicos/uso terapêutico , Compostos Heterocíclicos de 4 ou mais Anéis/uso terapêutico , Neoplasias/tratamento farmacológico , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Humanos , Imidazóis , Piridinas , Pirimidinas
6.
Oncotarget ; 5(24): 12728-37, 2014 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-25587031

RESUMO

We previously identified TRAIL-inducing compound 10 (TIC10), also known as NSC350625 or ONC201, from a NCI chemical library screen as a small molecule that has potent anti-tumor efficacy and a benign safety profile in preclinical cancer models. The chemical structure that was originally published by Stahle, et. al. in the patent literature was described as an imidazo[1,2-a]pyrido[4,3-d]pyrimidine derivative. The NCI and others generally accepted this as the correct structure, which was consistent with the mass spectrometry analysis outlined in the publication by Allen et. al. that first reported the molecule's anticancer properties. A recent publication demonstrated that the chemical structure of ONC201 material from the NCI is an angular [3,4-e] isomer of the originally disclosed, linear [4,3-d] structure. Here we confirm by NMR and X-ray structural analysis of the dihydrochloride salt form that the ONC201 material produced by Oncoceutics is the angular [3,4-e] structure and not the linear structure originally depicted in the patent literature and by the NCI. Similarly, in accordance with our biological evaluation, the previously disclosed anti-cancer activity is associated with the angular structure and not the linear isomer. Together these studies confirm that ONC201, produced by Oncoceutics or obtained from the NCI, possesses an angular [3,4-e] structure that represents the highly active anti-cancer compound utilized in prior preclinical studies and now entering clinical trials in advanced cancers.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Compostos Heterocíclicos de 4 ou mais Anéis/química , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Linhagem Celular Tumoral , Cristalografia por Raios X , Humanos , Imidazóis , Imageamento por Ressonância Magnética , Espectrometria de Massas , Modelos Moleculares , Conformação Molecular , Estrutura Molecular , Piridinas , Pirimidinas , Espectrofotometria Infravermelho , Relação Estrutura-Atividade
7.
AMIA Annu Symp Proc ; 2014: 1718-27, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25954444

RESUMO

OBJECTIVE: Examine how the Electronic Health Record (EHR) and its related systems support or inhibit provider collaboration. BACKGROUND: Health care systems in the US are simultaneously implementing EHRs and transitioning to more collaborative delivery systems; this study examines the interaction between these two changes. METHODS: This qualitative study of five US EHR implementations included 49 interviews and over 60 hours of provider observation. We examined the role of the EHR in building relationships, communicating, coordinating, and collaborative decision-making. RESULTS: The EHR plays four roles in collaboration: a repository, a messenger, an orchestrator, and a monitor. While EHR performance varied, common themes were decreased trust due to poor quality documentation, incomplete communication, potential for increased effectiveness through better coordination, and the emerging role of the EHR in identifying performance gaps. CONCLUSION: Both organizational and technical innovations are needed if the EHR is to truly support collaborative behaviors.


Assuntos
Comportamento Cooperativo , Registros Eletrônicos de Saúde , Atitude do Pessoal de Saúde , Humanos , Comunicação Interdisciplinar , Assistência Centrada no Paciente/organização & administração , Pesquisa Qualitativa , Estados Unidos
8.
J Immunol ; 191(10): 5074-84, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-24123687

RESUMO

The strong association of HLA-DR2b (DRB1*1501) with multiple sclerosis (MS) suggests this molecule as prime target for specific immunotherapy. Inhibition of HLA-DR2b-restricted myelin-specific T cells has the potential to selectively prevent CNS pathology mediated by these MHC molecules without undesired global immunosuppression. In this study, we report development of a highly selective small molecule inhibitor of peptide binding and presentation by HLA-DR2b. PV-267, the candidate molecule used in these studies, inhibited cytokine production and proliferation of myelin-specific HLA-DR2b-restricted T cells. PV-267 had no significant effect on T cell responses mediated by other MHC class II molecules, including HLA-DR1, -DR4, or -DR9. Importantly, PV-267 did not induce nonspecific immune activation of human PBMC. Lastly, PV-267 showed treatment efficacy both in preventing experimental autoimmune encephalomyelitis and in treating established disease. The results suggest that blocking the MS-associated HLA-DR2b allele with small molecule inhibitors may be a promising therapeutic strategy for the treatment of MS.


Assuntos
Encefalomielite Autoimune Experimental/prevenção & controle , Encefalomielite Autoimune Experimental/terapia , Antígeno HLA-DR2/metabolismo , Linfócitos T/metabolismo , Animais , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Encefalomielite Autoimune Experimental/imunologia , Antígeno HLA-DR2/efeitos dos fármacos , Antígeno HLA-DR2/imunologia , Humanos , Leucócitos Mononucleares/imunologia , Ativação Linfocitária/efeitos dos fármacos , Ativação Linfocitária/imunologia , Camundongos , Camundongos Transgênicos , Esclerose Múltipla/imunologia , Esclerose Múltipla/terapia , Proteína Básica da Mielina , Peptídeos/farmacologia , Linfócitos T/efeitos dos fármacos
9.
FASEB J ; 27(8): 3249-56, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23651543

RESUMO

Selenoprotein P (Sepp1) is taken up by receptor-mediated endocytosis for its selenium. The other extracellular selenoprotein, glutathione peroxidase-3 (Gpx3), has not been shown to transport selenium. Mice with genetic alterations of Sepp1, the Sepp1 receptors apolipoprotein E receptor-2 (apoER2) and megalin, and Gpx3 were used to investigate maternal-fetal selenium transfer. Immunocytochemistry (ICC) showed receptor-independent uptake of Sepp1 and Gpx3 in the same vesicles of d-13 visceral yolk sac cells, suggesting uptake by pinocytosis. ICC also showed apoER2-mediated uptake of maternal Sepp1 in the d-18 placenta. Thus, two selenoprotein-dependent maternal-fetal selenium transfer mechanisms were identified. Selenium was quantified in d-18 fetuses with the mechanisms disrupted. Maternal Sepp1 deletion, which lowers maternal whole-body selenium, decreased fetal selenium under selenium-adequate conditions but deletion of fetal apoER2 did not. Fetal apoER2 deletion did decrease fetal selenium, by 51%, under selenium-deficient conditions, verifying function of the placental Sepp1-apoER2 mechanism. Maternal Gpx3 deletion decreased fetal selenium, by 13%, but only under selenium-deficient conditions. These findings indicate that the selenoprotein uptake mechanisms ensure selenium transfer to the fetus under selenium-deficient conditions. The failure of their disruptions (apoER2 deletion, Gpx3 deletion) to affect fetal selenium under selenium-adequate conditions indicates the existence of an additional maternal-fetal selenium transfer mechanism.


Assuntos
Glutationa Peroxidase/metabolismo , Proteínas Relacionadas a Receptor de LDL/metabolismo , Proteína-2 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Troca Materno-Fetal/fisiologia , Selênio/metabolismo , Selenoproteína P/metabolismo , Animais , Transporte Biológico , Feminino , Glutationa Peroxidase/genética , Imuno-Histoquímica , Proteínas Relacionadas a Receptor de LDL/genética , Proteína-2 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Masculino , Troca Materno-Fetal/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia de Fluorescência , Placenta/embriologia , Placenta/metabolismo , Gravidez , Selenoproteína P/genética , Fatores de Tempo , Saco Vitelino/embriologia , Saco Vitelino/metabolismo
10.
Healthc Financ Manage ; 66(6): 146-8, 150, 152, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22734331

RESUMO

In 2005, St. Luke's Hospital in Chesterfield, Mo., launched the "Passport to Wellness" program to help employers reduce preventable illnesses by providing access to screenings, health education, health coaching, disease management, and healthy lifestyle programs. The program was designed to influence consumer choice of hospitals and physicians and influence health insurance purchasing decisions. St. Luke's program also met goals created by local businesses, including identifying health risks of each employer's workforce and reducing health-related costs.


Assuntos
Área Programática de Saúde , Economia Hospitalar , Promoção da Saúde/organização & administração , Planos de Assistência de Saúde para Empregados , Hospitais Religiosos , Marketing de Serviços de Saúde , Missouri , Estudos de Casos Organizacionais , Estados Unidos
11.
Transl Behav Med ; 2(4): 480-486, 2012 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-23338748

RESUMO

Collaboration has become a dominant mode of scientific inquiry, and good collaborative processes are important for ensuring scientific quality and productivity. Often the participants in these collaborations are not collocated, yet distance introduces challenges. There remains a need for evaluative tools that can identify potential collaboration problems early and provide strategies for managing and addressing collaboration issues. This paper introduces a new research and diagnostic tool, the Collaboration Success Wizard (CSW), and provides two case studies of its use in evaluating ongoing collaborative projects in the health sciences. The CSW is designed both to validate and refine existing theory about the factors that encourage successful collaboration and to promote good collaborative practices in geographically distributed team-based scientific projects. These cases demonstrate that the CSW can promote reflection and positive change in collaborative science.

12.
Artigo em Inglês | MEDLINE | ID: mdl-21493731

RESUMO

Glutathione peroxidase-3 (Gpx3), the extracellular glutathione peroxidase synthesized largely in the kidney, binds to basement membranes of renal cortical epithelial cells. The present study assessed extrarenal expression of Gpx3 using RT-PCR and presence of Gpx3 protein using immunocytochemistry. Gpx3 expression was higher in kidney and epididymis than in other tissues. Gpx3 bound to basement membranes of epithelial cells in the gastrointestinal tract, the efferent ducts connecting the seminiferous tubules with the epididymis, the bronchi, and type II pneumocytes. It was not detected on the basement membrane of type I pneumocytes. Gpx3 was also present in the lumen of the epididymis. Transplantation of Gpx3(+/+) kidneys into Gpx3(-/-) mice led to Gpx3 binding to the same basement membranes to which it bound in Gpx3(+/+) mice but not to its presence in the epididymal lumen. These results show that Gpx3 from the blood binds to basement membranes of specific epithelial cells and indicate that the cells modify their basement membranes to cause the binding. They further indicate that at least two Gpx3 compartments exist in the organism. In one compartment, kidney supplies Gpx3 through the blood to specific basement membranes in a number of tissues. In the other compartment, the epididymis provides Gpx3 to its own lumen. Tissues other than kidney and epididymis express Gpx3 at lower levels and may supply Gpx3 to other compartments.


Assuntos
Membrana Basal/enzimologia , Trato Gastrointestinal/enzimologia , Glutationa Peroxidase/metabolismo , Rim/enzimologia , Células Epiteliais Alveolares/enzimologia , Animais , Brônquios/enzimologia , Epididimo/enzimologia , Epididimo/metabolismo , Células Epiteliais/enzimologia , Glutationa Peroxidase/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Túbulos Seminíferos/enzimologia
13.
J Biol Chem ; 285(36): 27632-40, 2010 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-20581396

RESUMO

Localization of protein kinase A (PKA) via A-kinase-anchoring proteins (AKAPs) is important for cAMP responsiveness in many cellular systems, and evidence suggests that AKAPs play an important role in cardiac signaling. To test the importance of AKAP-mediated targeting of PKA on cardiac function, we designed a cell-permeable peptide, which we termed trans-activator of transcription (TAT)-AKAD for TAT-conjugated A-kinase-anchoring disruptor, using the PKA binding region of AKAP10 and tested the effects of this peptide in isolated cardiac myocytes and in Langendorff-perfused mouse hearts. We initially validated TAT-AKAD as a PKA localization inhibitor in cardiac myocytes by the use of confocal microscopy and cellular fractionation to show that treatment with the peptide disrupts type I and type II PKA regulatory subunits. Knockdown of PKA activity was demonstrated by decrease in phosphorylation of phospholamban and troponin I after beta-adrenergic stimulation in isolated myocytes. Treatment with TAT-AKAD reduced myocyte shortening and rates of contraction and relaxation. Injection of TAT-AKAD (1 microM), but not scrambled control peptide, into the coronary circulation of isolated perfused hearts rapidly (<1 min) and reversibly decreased heart rate and peak left ventricular developed pressure. TAT-AKAD also had a pronounced effect on developed pressure (-dP/dt), consistent with a delayed relaxation of the heart. The effects of TAT-AKAD on heart rate and contractility persisted in hearts pretreated with isoproterenol. Disruption of PKA localization with TAT-AKAD thus had negative effects on chronotropy, inotropy, and lusitropy, thereby indicating a key role for AKAP-targeted PKA in control of heart rate and contractile function.


Assuntos
Proteínas de Ancoragem à Quinase A/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Coração/efeitos dos fármacos , Coração/fisiologia , Peptídeos/metabolismo , Peptídeos/farmacologia , Ativação Transcricional/efeitos dos fármacos , Agonistas Adrenérgicos beta/farmacologia , Sequência de Aminoácidos , Animais , Ligação Competitiva , Bovinos , Subunidade RIIbeta da Proteína Quinase Dependente de AMP Cíclico/metabolismo , Subunidade RIalfa da Proteína Quinase Dependente de AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Frequência Cardíaca/efeitos dos fármacos , Masculino , Camundongos , Dados de Sequência Molecular , Células Musculares/citologia , Células Musculares/metabolismo , Contração Miocárdica/efeitos dos fármacos , Peptídeos/química , Perfusão , Permeabilidade , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Transporte Proteico/efeitos dos fármacos , Ratos
14.
Am J Physiol Renal Physiol ; 298(5): F1244-53, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20015939

RESUMO

Glutathione peroxidase-3 (Gpx3), also known as plasma or extracellular glutathione peroxidase, is a selenoprotein secreted primarily by kidney proximal convoluted tubule cells. In this study Gpx3(-/-) mice have been produced and immunocytochemical techniques have been developed to investigate Gpx3 metabolism. Gpx3(-/-) mice maintained the same whole-body content and urinary excretion of selenium as did Gpx3(+/+) mice. They tolerated selenium deficiency without observable ill effects. The simultaneous knockout of Gpx3 and selenoprotein P revealed that these two selenoproteins account for >97% of plasma selenium. Immunocytochemistry experiments demonstrated that Gpx3 binds selectively, both in vivo and in vitro, to basement membranes of renal cortical proximal and distal convoluted tubules. Based on calculations using selenium content, the kidney pool of Gpx3 is over twice as large as the plasma pool. These data indicate that Gpx3 does not serve in the regulation of selenium metabolism. The specific binding of a large pool of Gpx3 to basement membranes in the kidney cortex strongly suggests a need for glutathione peroxidase activity in the cortical peritubular space.


Assuntos
Membrana Basal/metabolismo , Glutationa Peroxidase/metabolismo , Córtex Renal/citologia , Córtex Renal/metabolismo , Animais , Feminino , Glutationa Peroxidase/deficiência , Glutationa Peroxidase/genética , Túbulos Renais Distais/citologia , Túbulos Renais Distais/metabolismo , Túbulos Renais Proximais/citologia , Túbulos Renais Proximais/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Animais , Selênio/metabolismo , Selenoproteína P/deficiência , Selenoproteína P/genética , Selenoproteína P/metabolismo
15.
J Med Chem ; 52(24): 8047-56, 2009 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-19929003

RESUMO

Inhibition of methionine aminopeptidase-2 (MetAP2) represents a novel approach to antiangiogenic therapy. We describe the synthesis and activity of fumagillin analogues that address the pharmacokinetic and safety liabilities of earlier candidates in this compound class. Two-step elaboration of fumagillol with amines yielded a diverse series of carbamates at C6 of the cyclohexane spiroepoxide. The most potent of these compounds exhibited subnanomolar inhibition of cell proliferation in HUVEC and BAEC assays. Although a range of functionalities were tolerated at this position, alpha-trisubstituted amines possessed markedly decreased inhibitory activity, and this could be rationalized by modeling based on the known fumagillin-MetAP2 crystal structure. The lead compound resulting from these studies, (3R,4S,5S,6R)-5-methoxy-4-((2R,3R)-2-methyl-3-(3-methylbut-2-enyl)oxiran-2-yl)-1-oxaspiro[2.5]octan-6-yl (R)-1-amino-3-methyl-1-oxobutan-2-ylcarbamate, (PPI-2458), demonstrated an improved pharmacokinetic profile relative to the earlier clinical candidate TNP-470, and has advanced into phase I clinical studies in non-Hodgkin's lymphoma and solid cancers.


Assuntos
Aminopeptidases/antagonistas & inibidores , Carbamatos/química , Carbamatos/farmacologia , Cicloexanos/química , Cicloexanos/farmacologia , Ácidos Graxos Insaturados/química , Ácidos Graxos Insaturados/farmacologia , Metaloendopeptidases/antagonistas & inibidores , Aminoácidos/química , Animais , Bovinos , Processos de Crescimento Celular/efeitos dos fármacos , Células Endoteliais/citologia , Células Endoteliais/efeitos dos fármacos , Humanos , Modelos Moleculares , Sesquiterpenos/química , Sesquiterpenos/farmacologia , Relação Estrutura-Atividade
16.
J Biol Chem ; 283(11): 6854-60, 2008 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-18174160

RESUMO

Selenoprotein P (Sepp1) contains most of the selenium in blood plasma, and it is utilized by the kidney, brain, and testis as a selenium source for selenoprotein synthesis. We recently demonstrated that apolipoprotein E receptor-2 (ApoER2) is required for Sepp1 uptake by the testis and that deletion of ApoER2 reduces testis and brain, but not kidney, selenium levels. This study examined the kidney Sepp1 uptake pathway. Immunolocalization experiments demonstrated that Sepp1 passed into the glomerular filtrate and was specifically taken up by proximal tubule epithelial cells. Neither the C terminus selenocysteine-rich domain of Sepp1 nor ApoER2 was required for Sepp1 uptake by proximal tubules. Tissue ligand binding assays using cryosections of Sepp1-/- kidneys revealed that the proximal tubule epithelium contained Sepp1-binding sites that were blocked by the receptor-associated protein, RAP, an inhibitor of lipoprotein receptor-ligand interactions. Ligand blotting assays of kidney membrane preparations fractionated by SDS-PAGE revealed that Sepp1 binds megalin, a lipoprotein receptor localized to the proximal tubule epithelium. Immunolocalization analyses confirmed the in vivo co-localization of Sepp1 and megalin in wild type kidneys and demonstrated the absence of proximal tubule Sepp1 uptake in megalin null mice. These results demonstrate that kidney selenium homeostasis is mediated by a megalin-dependent Sepp1 uptake pathway in the proximal tubule.


Assuntos
Células Epiteliais/metabolismo , Regulação da Expressão Gênica , Túbulos Renais/citologia , Proteína-2 Relacionada a Receptor de Lipoproteína de Baixa Densidade/fisiologia , Selenoproteína P/metabolismo , Animais , Sítios de Ligação , Proteínas Relacionadas a Receptor de LDL , Masculino , Camundongos , Camundongos Transgênicos , Modelos Biológicos , Estrutura Terciária de Proteína , Receptores de Lipoproteínas/química , Testículo/metabolismo , Distribuição Tecidual
17.
Proc Natl Acad Sci U S A ; 104(50): 19843-8, 2007 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-18056639

RESUMO

Cilia project from cells as membranous extensions, with microtubule structural cores assembling from basal bodies by intraflagellar transport (IFT). Here, we report a ciliary role for the inositol 1,3,4,5,6-pentakisphosphate 2-kinase (Ipk1) that generates inositol hexakisphosphate. In zebrafish embryos, reducing Ipk1 levels inhibited ciliary beating in Kupffer's vesicle and decreased ciliary length in the spinal canal, pronephric ducts, and Kupffer's vesicle. Electron microscopy showed that ciliary axonemal structures were not grossly altered. However, coincident knockdown of Ipk1 and IFT88 or IFT57 had synergistic perturbations. With GFP-Ipk1 enriched in centrosomes and basal bodies, we propose that Ipk1 plays a previously uncharacterized role in ciliary function.


Assuntos
Cílios/enzimologia , Cílios/fisiologia , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra , Animais , Animais Geneticamente Modificados , Transporte Biológico , Padronização Corporal , Linhagem Celular , Centrossomo/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Regulação Enzimológica da Expressão Gênica , Humanos , Microtúbulos/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética
19.
J Neurochem ; 101(6): 1583-95, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17542811

RESUMO

Amyloid beta-peptide (Abeta) is implicated as the major causative agent in Alzheimer's disease (AD). Abeta is produced by the processing of the amyloid precursor protein (APP) by BACE1 (beta-secretase) and gamma-secretase. Many inhibitors have been developed for the secretases. However, the inhibitors will interfere with the processing of not only APP but also of other secretase substrates. In this study, we describe the development of inhibitors that prevent production of Abeta by specific binding to the beta-cleavage site of APP. We used the hydropathic complementarity (HC) approach for the design of short peptide inhibitors. Some of the HC peptides were bound to the substrate peptide (Sub W) corresponding to the beta-cleavage site of APP and blocked its cleavage by recombinant human BACE1 (rhBACE1) in vitro. In addition, HC peptides specifically inhibited the cleavage of Sub W, and not affecting other BACE1 substrates. Chemical modification allowed an HC peptide (CIQIHF) to inhibit the processing of APP as well as the production of Abeta in the treated cells. Such novel APP-specific inhibitors will provide opportunity for the development of drugs that can be used for the prevention and treatment of AD with minimal side effects.


Assuntos
Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Peptídeos beta-Amiloides/antagonistas & inibidores , Precursor de Proteína beta-Amiloide/metabolismo , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Sequência de Aminoácidos , Peptídeos beta-Amiloides/biossíntese , Precursor de Proteína beta-Amiloide/antagonistas & inibidores , Animais , Sítios de Ligação , Humanos , Masculino , Peptídeos/síntese química , Peptídeos/metabolismo , Peptídeos/farmacologia , Ratos
20.
J Neurosci ; 27(23): 6207-11, 2007 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-17553992

RESUMO

Selenoprotein P (Sepp1) is a plasma and extracellular protein that is rich in selenium. Deletion of Sepp1 results in sharp decreases of selenium levels in the brain and testis with dysfunction of those organs. Deletion of Sepp1 also causes increased urinary selenium excretion, leading to moderate depletion of whole-body selenium. The lipoprotein receptor apolipoprotein E receptor-2 (apoER2) binds Sepp1 and facilitates its uptake by Sertoli cells, thus providing selenium for spermatogenesis. Experiments were performed to assess the effect of apoER2 on the concentration and function of selenium in the brain and on whole-body selenium. ApoER2-/- and apoER2+/+ male mice were fed a semipurified diet with selenite added as the source of selenium. ApoER2-/- mice had depressed brain and testis selenium, but normal levels in liver, kidney, muscle, and the whole body. Feeding a selenium-deficient diet to apoER2-/- mice led to neurological dysfunction and death, with some of the characteristics exhibited by Sepp1-/- mice fed the same diet. Thus, although it does not affect whole-body selenium, apoER2 is necessary for maintenance of brain selenium and for prevention of neurological dysfunction and death under conditions of selenium deficiency, suggesting an interaction of apoER2 with Sepp1 in the brain.


Assuntos
Encéfalo/metabolismo , Dieta/efeitos adversos , Deleção de Genes , Desnutrição/genética , Doenças do Sistema Nervoso/mortalidade , Receptores de Lipoproteínas/deficiência , Receptores de Lipoproteínas/genética , Selênio/deficiência , Animais , Morte , Dieta/métodos , Proteínas Relacionadas a Receptor de LDL , Masculino , Desnutrição/metabolismo , Desnutrição/mortalidade , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Doenças do Sistema Nervoso/metabolismo , Selênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...