Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 7144, 2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37932261

RESUMO

Transitions in the heterogamety of sex chromosomes (e.g., XY to ZW or vice versa) fundamentally alter the genetic basis of sex determination, however the details of these changes have been studied in only a few cases. In an XY to ZW transition, the X is likely to give rise to the W because they both carry feminizing genes and the X is expected to harbour less genetic load than the Y. Here, using a new reference genome for Salix exigua, we trace the X, Y, Z, and W sex determination regions during the homologous transition from an XY system to a ZW system in willow (Salix). We show that both the W and the Z arose from the Y chromosome. We find that the new Z chromosome shares multiple homologous putative masculinizing factors with the ancestral Y, whereas the new W lost these masculinizing factors and gained feminizing factors. The origination of both the W and Z from the Y was permitted by an unexpectedly low genetic load on the Y and this indicates that the origins of sex chromosomes during homologous transitions may be more flexible than previously considered.


Assuntos
Salix , Salix/genética , Cromossomos Sexuais , Cromossomo Y , Genoma , Evolução Molecular , Processos de Determinação Sexual
2.
Syst Biol ; 72(6): 1220-1232, 2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-37449764

RESUMO

Despite the economic, ecological, and scientific importance of the genera Salix L. (willows) and Populus L. (poplars, cottonwoods, and aspens) Salicaceae, we know little about the sources of differences in species diversity between the genera and of the phylogenetic conflict that often confounds estimating phylogenetic trees. Salix subgenera and sections, in particular, have been difficult to classify, with one recent attempt termed a "spectacular failure" due to a speculated radiation of the subgenera Vetrix and Chamaetia. Here, we use targeted sequence capture to understand the evolutionary history of this portion of the Salicaceae plant family. Our phylogenetic hypothesis was based on 787 gene regions and identified extensive phylogenetic conflict among genes. Our analysis supported some previously described subgeneric relationships and confirmed the polyphyly of others. Using an fbranch analysis, we identified several cases of hybridization in deep branches of the phylogeny, which likely contributed to discordance among gene trees. In addition, we identified a rapid increase in diversification rate near the origination of the Vetrix-Chamaetia clade in Salix. This region of the tree coincided with several nodes that lacked strong statistical support, indicating a possible increase in incomplete lineage sorting due to rapid diversification. The extraordinary level of both recent and ancient hybridization in both Salix and Populus have played important roles in the diversification and diversity in these two genera.


Assuntos
Populus , Salix , Filogenia , Salix/genética , Populus/genética , Evolução Biológica , Hibridização Genética
3.
Hortic Res ; 8(1): 170, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-34333534

RESUMO

Sex dimorphism and gene expression were studied in developing catkins in 159 F2 individuals from the bioenergy crop Salix purpurea, and potential mechanisms and pathways for regulating sex development were explored. Differential expression, eQTL, bisulfite sequencing, and network analysis were used to characterize sex dimorphism, detect candidate master regulator genes, and identify pathways through which the sex determination region (SDR) may mediate sex dimorphism. Eleven genes are presented as candidates for master regulators of sex, supported by gene expression and network analyses. These include genes putatively involved in hormone signaling, epigenetic modification, and regulation of transcription. eQTL analysis revealed a suite of transcription factors and genes involved in secondary metabolism and floral development that were predicted to be under direct control of the sex determination region. Furthermore, data from bisulfite sequencing and small RNA sequencing revealed strong differences in expression between males and females that would implicate both of these processes in sex dimorphism pathways. These data indicate that the mechanism of sex determination in Salix purpurea is likely different from that observed in the related genus Populus. This further demonstrates the dynamic nature of SDRs in plants, which involves a multitude of mechanisms of sex determination and a high rate of turnover.

4.
Heredity (Edinb) ; 126(4): 630-639, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33510464

RESUMO

The development of non-recombining sex chromosomes has radical effects on the evolution of discrete sexes and sexual dimorphism. Although dioecy is rare in plants, sex chromosomes have evolved repeatedly throughout the diversification of angiosperms, and many of these sex chromosomes are relatively young compared to those found in vertebrates. In this study, we designed and used a sequence capture array to identify a novel sex-linked region (SLR) in Salix nigra, a basal species in the willow clade, and demonstrated that this species has XY heterogamety. We did not detect any genetic overlap with the previously characterized ZW SLRs in willows, which map to a different chromosome. The S. nigra SLR is characterized by strong recombination suppression across a 2 MB region and an excess of low-frequency alleles, resulting in a low Tajima's D compared to the remainder of the genome. We speculate that either a recent bottleneck in population size or factors related to positive or background selection generated this differential pattern of Tajima's D on the X and autosomes. This discovery provides insights into factors that may influence the evolution of sex chromosomes in plants and contributes to a large number of recent observations that underscore their dynamic nature.


Assuntos
Salix , Processos de Determinação Sexual , Alelos , Salix/genética , Cromossomos Sexuais/genética
5.
Nat Commun ; 11(1): 5893, 2020 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-33208755

RESUMO

Almost all plants in the genus Populus are dioecious (i.e. trees are either male or female), but it is unknown whether dioecy evolved in a common ancestor or independently in different subgenera. Here, we sequence the small peritelomeric X- and Y-linked regions of P. deltoides chromosome XIX. Two genes are present only in the Y-linked region. One is a duplication of a non-Y-linked, female-specifically expressed response regulator, which produces siRNAs that block this gene's expression, repressing femaleness. The other is an LTR/Gypsy transposable element family member, which generates long non-coding RNAs. Overexpression of this gene in A. thaliana promotes androecium development. We also find both genes in the sex-determining region of P. simonii, a different poplar subgenus, which suggests that they are both stable components of poplar sex-determining systems. By contrast, only the duplicated response regulator gene is present in the sex-linked regions of P. davidiana and P. tremula. Therefore, findings in our study suggest dioecy may have evolved independently in different poplar subgenera.


Assuntos
Cromossomos de Plantas/genética , Proteínas de Plantas/genética , Populus/genética , Cromossomos Sexuais/genética , Elementos de DNA Transponíveis , Especificidade da Espécie
6.
Appl Plant Sci ; 8(10): e11394, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33163293

RESUMO

PREMISE: The family Salicaceae has proved taxonomically challenging, especially in the genus Salix, which is speciose and features frequent hybridization and polyploidy. Past efforts to reconstruct the phylogeny with molecular barcodes have failed to resolve the species relationships of many sections of the genus. METHODS: We used the wealth of sequence data in the family to design sequence capture probes to target regions of 300-1200 bp of exonic regions of 972 genes. RESULTS: We recovered sequence data for nearly all of the targeted genes in three species of Populus and three species of Salix. We present a species tree, discuss concordance among gene trees, and present population genomic summary statistics for these loci. CONCLUSIONS: Our sequence capture array has extremely high capture efficiency within the genera Populus and Salix, resulting in abundant phylogenetic information. Additionally, these loci show promise for population genomic studies.

7.
Curr Opin Plant Biol ; 54: 61-68, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32106015

RESUMO

The presence of thousands of independent origins of dioecy in angiosperms provides a unique opportunity to address the parallel evolution of the molecular pathways underlying unisexual flowers. Recent progress towards identifying sex determination genes has identified hormone response pathways, mainly associated with cytokinin and ethylene response pathways, as having been recruited multiple times independently to control unisexuality. Moreover, transcriptomics has begun to identify commonalities among intermediate sections of signal transduction pathways. These recent advances set the stage for development of a comparative evolutionary development research program to identify the shared and unique aspects of the genetic pathways of unisexual flower development in angiosperms.


Assuntos
Flores , Magnoliopsida , Citocininas , Plantas , Reprodução
8.
Mol Ecol Resour ; 20(3)2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32034885

RESUMO

Populus euphratica is well adapted to extreme desert environments and is an important model species for elucidating the mechanisms of abiotic stress resistance in trees. The current assembly of P. euphratica genome is highly fragmented with many gaps and errors, thereby impeding downstream applications. Here, we report an improved chromosome-level reference genome of P. euphratica (v2.0) using single-molecule sequencing and chromosome conformation capture (Hi-C) technologies. Relative to the previous reference genome, our assembly represents a nearly 60-fold improvement in contiguity, with a scaffold N50 size of 28.59 Mb. Using this genome, we have found that extensive expansion of Gypsy elements in P. euphratica led to its rapid increase in genome size compared to any other Salicaceae species studied to date, and potentially contributed to adaptive divergence driven by insertions near genes involved in stress tolerance. We also detected a wide range of unique structural rearrangements in P. euphratica, including 2,549 translocations, 454 inversions, 121 tandem and 14 segmental duplications. Several key genes likely to be involved in tolerance to abiotic stress were identified within these regions. This high-quality genome represents a valuable resource for poplar breeding and genetic improvement in the future, as well as comparative genomic analysis with other Salicaceae species.


Assuntos
Genoma de Planta/genética , Populus/genética , Adaptação Fisiológica/genética , Clima Desértico , Evolução Molecular , Regulação da Expressão Gênica de Plantas/genética , Genes de Plantas/genética , Estresse Fisiológico/genética , Árvores/genética
9.
New Phytol ; 225(3): 1370-1382, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31550399

RESUMO

Phylogenetic analysis is complicated by interspecific gene flow and the presence of shared ancestral polymorphisms, particularly those maintained by balancing selection. In this study, we aimed to examine the prevalence of these factors during the diversification of Populus, a model tree genus in the Northern Hemisphere. We constructed phylogenetic trees of 29 Populus taxa using 80 individuals based on re-sequenced genomes. Our species tree analyses recovered four main clades in the genus based on consensus nuclear phylogenies, but in conflict with the plastome phylogeny. A few interspecific relationships remained unresolved within the multiple-species clade because of inconsistent gene trees. Our results indicated that gene flow has been widespread within each clade and also occurred among the four clades during their early divergence. We identified 45 candidate genes with ancient polymorphisms maintained by balancing selection. These genes were mainly associated with mating compatibility, growth and stress resistance. Both gene flow and selection-mediated ancient polymorphisms are prevalent in the genus Populus. These are potentially important contributors to adaptive variation. Our results provide a framework for the diversification of model tree genus that will facilitate future comparative studies.


Assuntos
Fluxo Gênico , Filogenia , Populus/genética , Seleção Genética , Haplótipos/genética , Polimorfismo de Nucleotídeo Único/genética , Especificidade da Espécie
10.
New Phytol ; 221(1): 527-539, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30252135

RESUMO

Because sexual dimorphism in plants is often less morphologically conspicuous than in animals, studies of sex-biased gene expression may provide a quantitative metric to better address their commonality, molecular pathways, consistency across tissues and taxa, and evolution. The presence of sex-biased gene expression in tissues other than the androecium or gynoecium, termed secondary sexual characters, suggests that these traits arose after the initial evolution of dioecy. Patterns of sequence evolution may provide evidence of positive selection that drove sexual specialization. We compared gene expression in male and female flowers and leaves of Populus balsamifera to assess the extent of sex-biased expression, and tested whether sex-biased genes exhibit elevated rates of protein evolution. Sex-biased expression was pervasive in floral tissue, but nearly absent in leaf tissue. Female-biased genes in flowers were associated with photosynthesis, whereas male-biased genes were associated with mitochondrial function. Sex-biased genes did not exhibit elevated rates of protein evolution, contrary to results from other studies in animals and plants. Our results suggest that the ecological and physiological constraints associated with the energetics of flowering, rather than sexual conflict, have probably shaped the differences in male and female gene expression in P. balsamifera.


Assuntos
Flores/genética , Regulação da Expressão Gênica de Plantas , Folhas de Planta/genética , Populus/genética , Alaska , Evolução Molecular , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Populus/fisiologia
11.
Nat Commun ; 9(1): 5449, 2018 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-30575743

RESUMO

Increased human activity and climate change are driving numerous tree species to endangered status, and in the worst cases extinction. Here we examine the genomic signatures of the critically endangered ironwood tree Ostrya rehderiana and its widespread congener O. chinensis. Both species have similar demographic histories prior to the Last Glacial Maximum (LGM); however, the effective population size of O. rehderiana continued to decrease through the last 10,000 years, whereas O. chinensis recovered to Pre-LGM numbers. O. rehderiana accumulated more deleterious mutations, but purged more severely deleterious recessive variations than in O. chinensis. This purging and the gradually reduced inbreeding depression together may have mitigated extinction and contributed to the possible future survival of the outcrossing O. rehderiana. Our findings provide critical insights into the evolutionary history of population collapse and the potential for future recovery of the endangered trees.


Assuntos
Betulaceae/genética , Mudança Climática , Espécies em Perigo de Extinção , Variação Genética , Genoma de Planta , Evolução Biológica , Mutação
12.
Mol Ecol ; 27(3): 636-646, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29274176

RESUMO

Understanding the complex influences of landscape and anthropogenic elements that shape the population genetic structure of invasive species provides insight into patterns of colonization and spread. The application of landscape genomics techniques to these questions may offer detailed, previously undocumented insights into factors influencing species invasions. We investigated the spatial pattern of genetic variation and the influences of landscape factors on population similarity in an invasive riparian shrub, saltcedar (Tamarix L.) by analysing 1,997 genomewide SNP markers for 259 individuals from 25 populations collected throughout the southwestern United States. Our results revealed a broad-scale spatial genetic differentiation of saltcedar populations between the Colorado and Rio Grande river basins and identified potential barriers to population similarity along both river systems. River pathways most strongly contributed to population similarity. In contrast, low temperature and dams likely served as barriers to population similarity. We hypothesize that large-scale geographic patterns in genetic diversity resulted from a combination of early introductions from distinct populations, the subsequent influence of natural selection, dispersal barriers and founder effects during range expansion.


Assuntos
Variação Genética , Espécies Introduzidas , Rios , Tamaricaceae/genética , Genética Populacional , Geografia , Modelos Genéticos , Polimorfismo de Nucleotídeo Único/genética , Sudoeste dos Estados Unidos
13.
New Phytol ; 207(3): 710-22, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25809016

RESUMO

Protection against freeze damage during the growing season influences the northern range limits of plants. Freeze tolerance and freeze avoidance are the two major freeze resistance strategies. Winter survival strategies have been extensively studied in perennials, but few have addressed them and their genetic basis during the growing season. We examined intraspecific phenotypic variation in freeze resistance of Populus balsamifera across latitude and the growing season. To investigate the molecular basis of this variation, we surveyed nucleotide diversity and examined patterns of gene expression in the poplar C-repeat binding factor (CBF) gene family. Foliar freeze tolerance exhibited latitudinal and seasonal variation indicative of natural genotypic variation. CBF6 showed signatures of recent selective sweep. Of the 46 SNPs surveyed across the six CBF homologs, only CBF2_619 exhibited latitudinal differences consistent with increased freeze tolerance in the north. All six CBF genes were cold inducible, but showed varying patterns of expression across the growing season. Some Poplar CBF homologs exhibited patterns consistent with historical selection and clinal variation in freeze tolerance documented here. However, the CBF genes accounted for only a small amount of the variation, indicating that other genes in this and other molecular pathways likely play significant roles in nature.


Assuntos
Adaptação Fisiológica/genética , Congelamento , Populus/crescimento & desenvolvimento , Populus/genética , Estações do Ano , Alaska , Análise de Variância , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Variação Genética , Genética Populacional , Geografia , Íntrons/genética , Dados de Sequência Molecular , Nucleotídeos/genética , Polimorfismo de Nucleotídeo Único/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
14.
Mol Ecol ; 24(10): 2301-9, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25809088

RESUMO

Molecular ecology is poised to tackle a host of interesting questions in the coming years. The Arctic provides a unique and rapidly changing environment with a suite of emerging research needs that can be addressed through genetics and genomics. Here we highlight recent research on boreal and tundra ecosystems and put forth a series of questions related to plant and microbial responses to climate change that can benefit from technologies and analytical approaches contained within the molecular ecologist's toolbox. These questions include understanding (i) the mechanisms of plant acquisition and uptake of N in cold soils, (ii) how these processes are mediated by root traits, (iii) the role played by the plant microbiome in cycling C and nutrients within high-latitude ecosystems and (iv) plant adaptation to extreme Arctic climates. We highlight how contributions can be made in these areas through studies that target model and nonmodel organisms and emphasize that the sequencing of the Populus and Salix genomes provides a valuable resource for scientific discoveries related to the plant microbiome and plant adaptation in the Arctic. Moreover, there exists an exciting role to play in model development, including incorporating genetic and evolutionary knowledge into ecosystem and Earth System Models. In this regard, the molecular ecologist provides a valuable perspective on plant genetics as a driver for community biodiversity, and how ecological and evolutionary forces govern community dynamics in a rapidly changing climate.


Assuntos
Mudança Climática , Florestas , Genômica , Tundra , Adaptação Biológica , Regiões Árticas , Ciclo do Carbono , Temperatura Baixa , Genoma de Planta , Microbiota , Nitrogênio/metabolismo , Ciclo do Nitrogênio , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Plantas/genética , Plantas/metabolismo , Plantas/microbiologia , Populus/genética , Salix/genética
15.
Mol Ecol ; 24(1): 235-48, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25443313

RESUMO

Micro-organisms associated with plants and animals affect host fitness, shape community structure and influence ecosystem properties. Climate change is expected to influence microbial communities, but their reactions are not well understood. Host-associated micro-organisms are influenced by the climate reactions of their hosts, which may undergo range shifts due to climatic niche tracking, or may be actively relocated to mitigate the effects of climate change. We used a common-garden experiment and rDNA metabarcoding to examine the effect of host relocation and high-latitude warming on the complex fungal endophytic microbiome associated with leaves of an ecologically dominant boreal forest tree (Populus balsamifera L.). We also considered the potential effects of poplar genetic identity in defining the reactions of the microbiome to the treatments. The relocation of hosts to the north increased the diversity of the microbiome and influenced its structure, with results indicating enemy release from plausible pathogens. High-latitude warming decreased microbiome diversity in comparison with natural northern conditions. The warming also caused structural changes, which made the fungal communities distinct in comparison with both low-latitude and high-latitude natural communities, and increased the abundance of plausible pathogens. The reactions of the microbiome to relocation and warming were strongly dependent on host genetic identity. This suggests that climate change effects on host-microbiome systems may be mediated by the interaction of environmental factors and the population genetic processes of the hosts.


Assuntos
Fungos/classificação , Aquecimento Global , Microbiota , Populus/microbiologia , Biodiversidade , Canadá , Endófitos/classificação , Modelos Lineares , Folhas de Planta/microbiologia , Árvores/microbiologia
16.
PLoS One ; 8(1): e53987, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23326555

RESUMO

Foliar fungal communities of plants are diverse and ubiquitous. In grasses endophytes may increase host fitness; in trees, their ecological roles are poorly understood. We investigated whether the genotype of the host tree influences community structure of foliar fungi. We sampled leaves from genotyped balsam poplars from across the species' range, and applied 454 amplicon sequencing to characterize foliar fungal communities. At the time of the sampling the poplars had been growing in a common garden for two years. We found diverse fungal communities associated with the poplar leaves. Linear discriminant analysis and generalized linear models showed that host genotypes had a structuring effect on the composition of foliar fungal communities. The observed patterns may be explained by a filtering mechanism which allows the trees to selectively recruit fungal strains from the environment. Alternatively, host genotype-specific fungal communities may be present in the tree systemically, and persist in the host even after two clonal reproductions. Both scenarios are consistent with host tree adaptation to specific foliar fungal communities and suggest that there is a functional basis for the strong biotic interaction.


Assuntos
Fungos/crescimento & desenvolvimento , Metagenoma , Populus , Fungos/genética , Fungos/patogenicidade , Variação Genética , Genótipo , Folhas de Planta/genética , Folhas de Planta/microbiologia , Populus/genética , Populus/microbiologia
17.
Mol Ecol ; 22(5): 1214-30, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23094714

RESUMO

The manner in which organisms adapt to climate change informs a broader understanding of the evolution of biodiversity as well as conservation and mitigation plans. We apply common garden and association mapping approaches to quantify genetic variance and identify loci affecting bud flush and bud set, traits that define a tree's season for height growth, in the boreal forest tree Populus balsamifera L. (balsam poplar). Using data from 478 genotypes grown in each of two common gardens, one near the southern edge and another near the northern edge of P. balsamifera's range, we found that broad-sense heritability for bud flush and bud set was generally high (H(2) > 0.5 in most cases), suggesting that abundant genetic variation exists for phenological response to changes in the length of the growing season. To identify the molecular genetic basis of this variation, we genotyped trees for 346 candidate single nucleotide polymorphisms (SNPs) from 27 candidate genes for the CO/FT pathway in poplar. Mixed-model analyses of variance identified SNPs in 10 genes to be associated with variation in either bud flush or bud set. Multiple SNPs within FRIGIDA were associated with bud flush, whereas multiple SNPs in LEAFY and GIGANTEA 5 were associated with bud set. Although there was strong population structure in stem phenology, the geographic distribution of multilocus association SNP genotypes was widespread except at the most northern populations, indicating that geographic regions may harbour sufficient diversity in functional genes to facilitate adaption to future climatic conditions in many sites.


Assuntos
Adaptação Fisiológica , Genoma de Planta , Aquecimento Global , Populus/crescimento & desenvolvimento , Populus/genética , Loci Gênicos , Variação Genética , Genótipo , Fenótipo , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Polimorfismo de Nucleotídeo Único , Estações do Ano
18.
Mol Ecol ; 21(10): 2315-7, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22548253

RESUMO

Adaptive clines are striking examples of natural selection in action, yet few have been studied in depth. In this issue of Molecular Ecology, Kooyers & Olsen (2012) introduce modern analyses and thinking towards studies of a classical example of the rapid and repeated evolution of latitudinal and altitudinal clines in cyanogenesis in white clover, Trifolium repens L. Recognizing that adaptive clines represent trade-offs in the selective benefits of traits at different ends of a geographical transect, these researchers focus on whether evidence for selection can be found at regional (coarse) and local (fine) scales. After adjusting for population genetic patterns generated by demographic processes, Kooyers and Olsen provide evidence that the cyanogenesis cline is adaptive across a transect from Louisiana to Wisconsin, USA. Within local populations, divergent selection on coupling dominant and recessive alleles that underlie cyanogenesis is predicted to drive populations to gametic phase disequilibrium (LD), a pattern that has been found in several other studies reviewed by Kooyers and Olsen. The absence of LD within any sampled populations in this study leads the authors to suggest that selective patterns within these clines may be more complex than previously proposed, perhaps even following theoretical predictions of a geographic mosaic.


Assuntos
Adaptação Fisiológica/genética , Evolução Biológica , Nitrilas/metabolismo , Seleção Genética , Trifolium/genética
19.
Mol Biol Evol ; 29(10): 3143-52, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22513286

RESUMO

Identifying the signature and targets of local adaptation is an increasingly important goal in empirical population genetics. Using data from 443 balsam poplar Populus balsamifera trees sampled from 31 populations, we tested for evidence of geographically variable selection shaping diversity at 27 homologues of the Arabidopsis flowering-time network. These genes are implicated in the control of seasonal phenology, an important determinant of fitness. Using 335 candidate and 412 reference single nucleotide polymorphisms (SNPs), we tested for evidence of local adaptation by searching for elevated population differentiation using F(ST)-based outlier analyses implemented in BayeScan or a Hierarchical Model in Arelquin and by testing for significant associations between allele frequency and environmental variables using BAYENV. A total of 46 SNPs from 14 candidate genes had signatures of local adaptation-either significantly greater population differentiation or significant covariance with one or more environmental variable relative to reference SNP distributions. Only 11 SNPs from two genes exhibited both elevated population differentiation and covariance with one or more environmental variables. Several genes including the abscisic acid gene ABI1B and the circadian clock genes ELF3 and GI5 harbored a large number of SNPs with signatures of local adaptation-with SNPs in GI5 strongly covarying with both latitude and precipitation and SNPs in ABI1B strongly covarying with temperature. In contrast to several other systems, we find little evidence that photoreceptors, including phytochromes, play an important role in local adaptation. Our results additionally show that detecting local adaptation is sensitive to the analytical approaches used and that model-based significance thresholds should be viewed with caution.


Assuntos
Adaptação Fisiológica/genética , Flores/genética , Flores/fisiologia , Redes Reguladoras de Genes/genética , Populus/genética , Populus/fisiologia , Proteínas CLOCK/genética , Ritmo Circadiano/genética , Interação Gene-Ambiente , Genes de Plantas/genética , Variação Genética , Genética Populacional , Desequilíbrio de Ligação/genética , Modelos Genéticos , Polimorfismo de Nucleotídeo Único/genética , Fatores de Tempo
20.
PLoS One ; 7(2): e30401, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22383961

RESUMO

Chimeric genes are significant sources of evolutionary innovation that are normally created when portions of two or more protein coding regions fuse to form a new open reading frame. In plant mitochondria astonishingly high numbers of different novel chimeric genes have been reported, where they are generated through processes of rearrangement and recombination. Nonetheless, because most studies do not find or report nucleotide variation within the same chimeric gene, evolution after the origination of these chimeric genes remains unstudied. Here we identify two alleles of a complex chimera in Silene vulgaris that are divergent in nucleotide sequence, genomic position relative to other mitochondrial genes, and expression patterns. Structural patterns suggest a history partially influenced by gene conversion between the chimeric gene and functional copies of subunit 1 of the mitochondrial ATP synthase gene (atp1). We identified small repeat structures within the chimeras that are likely recombination sites allowing generation of the chimera. These results establish the potential for chimeric gene divergence in different plant mitochondrial lineages within the same species. This result contrasts with the absence of diversity within mitochondrial chimeras found in crop species.


Assuntos
Genes Mitocondriais , Silene/genética , Alelos , Proteínas de Arabidopsis/genética , Southern Blotting , Códon , Cruzamentos Genéticos , Primers do DNA/genética , Evolução Molecular , Regulação da Expressão Gênica , Genes de Plantas , Variação Genética , Genoma de Planta , Funções Verossimilhança , Modelos Genéticos , Mosaicismo , Filogenia , Reação em Cadeia da Polimerase , ATPases Translocadoras de Prótons/genética , RNA Mensageiro/metabolismo , Recombinação Genética , Especificidade da Espécie , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...