Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 165
Filtrar
1.
Nat Struct Mol Biol ; 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39313635

RESUMO

Activation of the chemokine receptor CXCR4 by its chemokine ligand CXCL12 regulates diverse cellular processes. Previously reported crystal structures of CXCR4 revealed the architecture of an inactive, homodimeric receptor. However, many structural aspects of CXCR4 remain poorly understood. Here, we use cryo-electron microscopy to investigate various modes of human CXCR4 regulation. CXCL12 activates CXCR4 by inserting its N terminus deep into the CXCR4 orthosteric pocket. The binding of US Food and Drug Administration-approved antagonist AMD3100 is stabilized by electrostatic interactions with acidic residues in the seven-transmembrane-helix bundle. A potent antibody blocker, REGN7663, binds across the extracellular face of CXCR4 and inserts its complementarity-determining region H3 loop into the orthosteric pocket. Trimeric and tetrameric structures of CXCR4 reveal modes of G-protein-coupled receptor oligomerization. We show that CXCR4 adopts distinct subunit conformations in trimeric and tetrameric assemblies, highlighting how oligomerization could allosterically regulate chemokine receptor function.

2.
Nature ; 633(8030): 654-661, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39261724

RESUMO

Heart failure is a leading cause of morbidity and mortality1,2. Elevated intracardiac pressures and myocyte stretch in heart failure trigger the release of counter-regulatory natriuretic peptides, which act through their receptor (NPR1) to affect vasodilation, diuresis and natriuresis, lowering venous pressures and relieving venous congestion3-8. Recombinant natriuretic peptide infusions were developed to treat heart failure but have been limited by a short duration of effect9,10. Here we report that in a human genetic analysis of over 700,000 individuals, lifelong exposure to coding variants of the NPR1 gene is associated with changes in blood pressure and risk of heart failure. We describe the development of REGN5381, an investigational monoclonal agonist antibody that targets the membrane-bound guanylate cyclase receptor NPR1. REGN5381, an allosteric agonist of NPR1, induces an active-like receptor conformation that results in haemodynamic effects preferentially on venous vasculature, including reductions in systolic blood pressure and venous pressure in animal models. In healthy human volunteers, REGN5381 produced the expected haemodynamic effects, reflecting reductions in venous pressures, without obvious changes in diuresis and natriuresis. These data support the development of REGN5381 for long-lasting and selective lowering of venous pressures that drive symptomatology in patients with heart failure.


Assuntos
Anticorpos Monoclonais , Pressão Sanguínea , Receptores do Fator Natriurético Atrial , Vasoconstrição , Veias , Adulto , Animais , Cães , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Adulto Jovem , Regulação Alostérica/efeitos dos fármacos , Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais/efeitos adversos , Anticorpos Monoclonais/farmacocinética , Anticorpos Monoclonais/farmacologia , Pressão Sanguínea/efeitos dos fármacos , Pressão Sanguínea/genética , Diurese/efeitos dos fármacos , Voluntários Saudáveis , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/fisiopatologia , Hemodinâmica/efeitos dos fármacos , Macaca fascicularis , Músculo Liso Vascular/efeitos dos fármacos , Natriurese/efeitos dos fármacos , Receptores do Fator Natriurético Atrial/metabolismo , Receptores do Fator Natriurético Atrial/agonistas , Receptores do Fator Natriurético Atrial/genética , Vasoconstrição/efeitos dos fármacos , Vasoconstrição/fisiologia , Veias/efeitos dos fármacos , Veias/fisiologia
3.
Cell Rep ; 43(9): 114665, 2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39215998

RESUMO

The neural basis of tongue mechanosensation remains largely mysterious despite the tongue's high tactile acuity, sensitivity, and relevance to ethologically important functions. We studied terminal morphologies and tactile responses of lingual afferents from the trigeminal ganglion. Fungiform papillae, the taste-bud-holding structures in the tongue, were convergently innervated by multiple Piezo2+ trigeminal afferents, whereas single trigeminal afferents branched into multiple adjacent filiform papillae. In vivo single-unit recordings from the trigeminal ganglion revealed lingual low-threshold mechanoreceptors (LTMRs) with distinct tactile properties ranging from intermediately adapting (IA) to rapidly adapting (RA). The receptive fields of these LTMRs were mostly less than 0.1 mm2 and concentrated at the tip of the tongue, resembling the distribution of fungiform papillae. Our results indicate that fungiform papillae are mechanosensory structures and suggest a simple model that links functional and anatomical properties of tactile sensory neurons in the tongue.

4.
J Biopharm Stat ; : 1-14, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39039906

RESUMO

In a prospective observational study (POS) designed to assess the average causal effect of a treatment (e.g. Drug A) compared to a comparator (e.g. Drug B) in the treatment population, enrolling all patients who are assigned to the treatments of interest for follow-up has a potentially large negative impact on the statistical efficiency and bias of the analysis of the outcomes and on the cost of the study. "Up-front matching" is an innovative enrollment method for selecting patients for long-term follow-up among those who have already been assigned to treatment or comparator which uses frequency matching and hence avoids the restrictions of individual matching that other methods have used. To achieve potential statistical and logistical efficiencies in the POS, in up-front matching, a target population is defined based on a retrospective database which then enables selecting populations of patients for follow-up that have desirable statistical properties. In particular, the resulting populations of patients who are enrolled look like the population of treatment patients were randomized to treatment or comparator for the baseline covariates that are used to select patients for follow-up. The method is illustrated in detail for a study designed to assess the effect of injectable antipsychotics versus oral antipsychotics.

5.
bioRxiv ; 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38979246

RESUMO

Complex movements involve highly coordinated control of local muscle elements. Highly controlled perturbations of motor outputs can reveal insights into the neural control of movements. Here we introduce an optogenetic method, compatible with electromyography (EMG) recordings, to perturb muscles in transgenic mice. By expressing channelrhodopsin in muscle fibers, we achieved noninvasive, focal activation of orofacial muscles, enabling detailed examination of the mechanical properties of optogenetically evoked jaw muscle contractions. We demonstrated simultaneous EMG recording and optical stimulation, revealing the electrophysiological characteristics of optogenetically triggered muscle activity. Additionally, we applied optogenetic activation of muscles in physiologically and behaviorally relevant settings, mapping precise muscle actions and perturbing active behaviors. Our findings highlight the potential of muscle optogenetics to precisely manipulate muscle activity, offering a powerful tool for probing neuromuscular control systems and advancing our understanding of motor control.

6.
Cancer Res ; 84(13): 2169-2180, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-39082679

RESUMO

The receptor tyrosine kinase FGFR3 is frequently mutated in bladder cancer and is a validated therapeutic target. Although pan-FGFR tyrosine kinase inhibitors (TKI) have shown clinical efficacy, toxicity and acquired resistance limit the benefit of these agents. While antibody-based therapeutics can offer superior selectivity than TKIs, conventional ligand-blocking antibodies are usually ineffective inhibitors of constitutively active receptor tyrosine kinases. Furthermore, the existence of multiple oncogenic variants of FGFR3 presents an additional challenge for antibody-mediated blockade. Here, we developed a tetravalent FGFR3×FGFR3 bispecific antibody that inhibited FGFR3 point mutants and fusion proteins more effectively than any of the conventional FGFR3 antibodies that we produced. Each arm of the bispecific antibody contacted two distinct epitopes of FGFR3 through a cis mode of binding. The antibody blocked dimerization of the most common FGFR3 oncogenic variant (S249C extracellular domain mutation) and inhibited the function of FGFR3 variants that are resistant to pan-FGFR TKIs. The antibody was highly effective in suppressing growth of FGFR3-driven tumor models, providing efficacy comparable to that of the FDA-approved TKI erdafitinib. Thus, this bispecific antibody may provide an effective approach for broad and highly selective inhibition of oncogenic FGFR3 variants. Significance: Development of a bispecific antibody that broadly inhibits gain-of-function FGFR3 variants provides a therapeutic strategy to target tumors with oncogenic FGFR3 point mutations and fusions, a particularly difficult case for antibody blockade.


Assuntos
Anticorpos Biespecíficos , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos , Neoplasias da Bexiga Urinária , Anticorpos Biespecíficos/farmacologia , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/antagonistas & inibidores , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/imunologia , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/metabolismo , Humanos , Animais , Camundongos , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/imunologia , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/patologia , Ensaios Antitumorais Modelo de Xenoenxerto , Linhagem Celular Tumoral , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Feminino , Mutação Puntual
7.
J Antibiot (Tokyo) ; 77(1): 57-65, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37872357

RESUMO

For a number of years, antimicrobial resistance (AMR) has been a critical issue for humanity. Drug discovery efforts have been very limited and the spread of bacterial pathogens has over-run our traditional arsenal of antibiotics. Bacteria can involve to evade compounds that can halt their rapid growth. The authors have discovered a potent macrocycle derivative that when dosed concomitantly with the standard of care (SOC) antibiotic vancomycin, can clear methicillin resistant Staphylococcus aureus (MRSA) infections. In addition, we have probed the lead compounds in Salmonella typhimurium bacterial strains. In vitro, in vivo, and ADME data have been included to stress the virtues of this new antibiotic.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Humanos , Vancomicina/farmacologia , Rifampina , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/microbiologia
8.
Elife ; 122023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38113081

RESUMO

Neurons coordinate their activity to produce an astonishing variety of motor behaviors. Our present understanding of motor control has grown rapidly thanks to new methods for recording and analyzing populations of many individual neurons over time. In contrast, current methods for recording the nervous system's actual motor output - the activation of muscle fibers by motor neurons - typically cannot detect the individual electrical events produced by muscle fibers during natural behaviors and scale poorly across species and muscle groups. Here we present a novel class of electrode devices ('Myomatrix arrays') that record muscle activity at unprecedented resolution across muscles and behaviors. High-density, flexible electrode arrays allow for stable recordings from the muscle fibers activated by a single motor neuron, called a 'motor unit,' during natural behaviors in many species, including mice, rats, primates, songbirds, frogs, and insects. This technology therefore allows the nervous system's motor output to be monitored in unprecedented detail during complex behaviors across species and muscle morphologies. We anticipate that this technology will allow rapid advances in understanding the neural control of behavior and identifying pathologies of the motor system.


Assuntos
Neurônios Motores , Primatas , Ratos , Camundongos , Animais , Neurônios Motores/fisiologia , Eletrodos , Fibras Musculares Esqueléticas
9.
Curr Biol ; 33(22): R1203-R1205, 2023 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-37989101

RESUMO

Muscular hydrostats, such as the elephant trunk, can perform precise motor actions. A new study has revealed that the elephant trunk contains a dense network of tiny muscle fascicles, suggesting that muscle miniaturization may be a key toward understanding how soft organs achieve both strength and dexterity.


Assuntos
Elefantes , Animais , Músculo Esquelético
10.
Sci Transl Med ; 15(723): eadd4897, 2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-37992152

RESUMO

Deficiency in the adipose-derived hormone leptin or leptin receptor signaling causes class 3 obesity in individuals with genetic loss-of-function mutations in leptin or its receptor LEPR and metabolic and liver disease in individuals with hypoleptinemia secondary to lipoatrophy such as in individuals with generalized lipodystrophy. Therapies that restore leptin-LEPR signaling may resolve these metabolic sequelae. We developed a fully human monoclonal antibody (mAb), REGN4461 (mibavademab), that activates the human LEPR in the absence or presence of leptin. In obese leptin knockout mice, REGN4461 normalized body weight, food intake, blood glucose, and insulin sensitivity. In a mouse model of generalized lipodystrophy, REGN4461 alleviated hyperphagia, hyperglycemia, insulin resistance, dyslipidemia, and hepatic steatosis. In a phase 1, randomized, double-blind, placebo-controlled two-part study, REGN4461 was well tolerated with an acceptable safety profile. Treatment of individuals with overweight or obesity with REGN4461 decreased body weight over 12 weeks in those with low circulating leptin concentrations (<8 ng/ml) but had no effect on body weight in individuals with higher baseline leptin. Furthermore, compassionate-use treatment of a single patient with atypical partial lipodystrophy and a history of undetectable leptin concentrations associated with neutralizing antibodies to metreleptin was associated with noteable improvements in circulating triglycerides and hepatic steatosis. Collectively, these translational data unveil an agonist LEPR mAb that may provide clinical benefit in disorders associated with relatively low leptin concentrations.


Assuntos
Resistência à Insulina , Lipodistrofia Generalizada Congênita , Animais , Camundongos , Humanos , Leptina/uso terapêutico , Ensaios de Uso Compassivo , Receptores para Leptina/metabolismo , Lipodistrofia Generalizada Congênita/tratamento farmacológico , Obesidade/tratamento farmacológico , Anticorpos/uso terapêutico , Peso Corporal
11.
Cell Rep ; 42(11): 113316, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-37889748

RESUMO

Pain and itch coding mechanisms in polymodal sensory neurons remain elusive. MrgprD+ neurons represent a major polymodal population and mediate both mechanical pain and nonhistaminergic itch. Here, we show that chemogenetic activation of MrgprD+ neurons elicited both pain- and itch-related behavior in a dose-dependent manner, revealing an unanticipated compatibility between pain and itch in polymodal neurons. While VGlut2-dependent glutamate release is required for both pain and itch transmission from MrgprD+ neurons, the neuropeptide neuromedin B (NMB) is selectively required for itch signaling. Electrophysiological recordings further demonstrated that glutamate synergizes with NMB to excite NMB-sensitive postsynaptic neurons. Ablation of these spinal neurons selectively abolished itch signals from MrgprD+ neurons, without affecting pain signals, suggesting a dedicated itch-processing central circuit. These findings reveal distinct neurotransmitters and neural circuit requirements for pain and itch signaling from MrgprD+ polymodal sensory neurons, providing new insights on coding and processing of pain and itch.


Assuntos
Prurido , Células Receptoras Sensoriais , Humanos , Células Receptoras Sensoriais/fisiologia , Dor , Transdução de Sinais/fisiologia , Glutamatos
12.
bioRxiv ; 2023 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-37645855

RESUMO

The mammalian tongue is richly innervated with somatosensory, gustatory and motor fibers. These form the basis of many ethologically important functions such as eating, speaking and social grooming. Despite its high tactile acuity and sensitivity, the neural basis of tongue mechanosensation remains largely mysterious. Here we explored the organization of mechanosensory afferents in the tongue and found that each lingual papilla is innervated by Piezo2 + trigeminal neurons. Notably, each fungiform papilla contained highly specialized ring-like sensory neuron terminations that circumscribe the taste buds. Myelinated lingual afferents in the mouse lingual papillae did not form corpuscular sensory end organs but rather had only free nerve endings. In vivo single-unit recordings from the trigeminal ganglion revealed two types of lingual low-threshold mechanoreceptors (LTMRs) with conduction velocities in the Aδ range or above and distinct response properties: intermediately adapting (IA) units and rapidly adapting (RA) units. IA units were sensitive to static indentation and stroking, while RA units had a preference for tangential forces applied by stroking. Lingual LTMRs were not directly responsive to rapid cooling or chemicals that can induce astringent or numbing sensations. Genetic labeling of lingual afferents in the tongue revealed at least two types of nerve terminal patterns, involving dense innervation of individual fungiform papillae by multiple putatively distinct afferents, and relatively sparse innervation of filiform papillae. Together, our results indicate that fungiform papillae are mechanosensory structures, while suggesting a simple model that links the functional and anatomical properties of tactile sensory neurons in the tongue.

14.
Immunol Lett ; 261: 37-46, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37459958

RESUMO

Immunity in a naïve organism is tightly controlled. Adequate proportions of the many immune cell subsets must be produced to mount efficient responses to eventual challenges. In addition, a functioning immune system is highly dynamic at steady state. Mature immune cells must be positioned properly and/or circulate to facilitate the detection of dangers. They must also be poised to promptly react to unusual encounters, while ignoring innocuous germs and self. Numerous regulatory mechanisms act at the molecular level to generate such an exquisite structure, including miRNA-mediated repression of protein synthesis. Notably, the miRNAs from the miR-142 locus are preferentially expressed in hematopoietic cells. Their importance is underscored by the deeply disturbed immune system seen upon inactivation of the locus in mice. In this review, we explore reported roles for the miR-142 miRNAs in the shaping of immunity in vertebrates, discussing in particular their contributions to the generation, migration and survival of hematopoietic cells.


Assuntos
MicroRNAs , Animais , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Sistema Imunitário/metabolismo
15.
Glycobiology ; 33(7): 591-604, 2023 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-37341346

RESUMO

V-set and immunoglobulin domain-containing 4 (VSIG4) is a complement receptor of the immunoglobulin superfamily that is specifically expressed on tissue resident macrophages, and its many reported functions and binding partners suggest a complex role in immune function. VSIG4 is reported to have a role in immune surveillance as well as in modulating diverse disease phenotypes such as infections, autoimmune conditions, and cancer. However, the mechanism(s) governing VSIG4's complex, context-dependent role in immune regulation remains elusive. Here, we identify cell surface and soluble glycosaminoglycans, specifically heparan sulfates, as novel binding partners of VSIG4. We demonstrate that genetic deletion of heparan sulfate synthesis enzymes or cleavage of cell-surface heparan sulfates reduced VSIG4 binding to the cell surface. Furthermore, binding studies demonstrate that VSIG4 interacts directly with heparan sulfates, with a preference for highly sulfated moieties and longer glycosaminoglycan chains. To assess the impact on VSIG4 biology, we show that heparan sulfates compete with known VSIG4 binding partners C3b and iC3b. Furthermore, mutagenesis studies indicate that this competition occurs through overlapping binding epitopes for heparan sulfates and complement on VSIG4. Together these data suggest a novel role for heparan sulfates in VSIG4-dependent immune modulation.


Assuntos
Glicosaminoglicanos , Heparitina Sulfato , Heparitina Sulfato/metabolismo , Glicosaminoglicanos/metabolismo , Receptores de Complemento/genética , Receptores de Complemento/metabolismo , Membrana Celular/metabolismo , Sulfatos
16.
Nat Commun ; 14(1): 2401, 2023 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-37100770

RESUMO

The recognition of antigenic peptide-MHC (pMHC) molecules by T-cell receptors (TCR) initiates the T-cell mediated immune response. Structural characterization is key for understanding the specificity of TCR-pMHC interactions and informing the development of therapeutics. Despite the rapid rise of single particle cryoelectron microscopy (cryoEM), x-ray crystallography has remained the preferred method for structure determination of TCR-pMHC complexes. Here, we report cryoEM structures of two distinct full-length α/ß TCR-CD3 complexes bound to their pMHC ligand, the cancer-testis antigen HLA-A2/MAGEA4 (230-239). We also determined cryoEM structures of pMHCs containing MAGEA4 (230-239) peptide and the closely related MAGEA8 (232-241) peptide in the absence of TCR, which provided a structural explanation for the MAGEA4 preference displayed by the TCRs. These findings provide insights into the TCR recognition of a clinically relevant cancer antigen and demonstrate the utility of cryoEM for high-resolution structural analysis of TCR-pMHC interactions.


Assuntos
Neoplasias , Receptores de Antígenos de Linfócitos T , Humanos , Microscopia Crioeletrônica , Ligação Proteica , Receptores de Antígenos de Linfócitos T/metabolismo , Peptídeos/química , Antígenos de Histocompatibilidade/metabolismo , Complexo Principal de Histocompatibilidade
17.
Mol Cancer Ther ; 22(3): 357-370, 2023 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-36861363

RESUMO

Most antibody-drug conjugates (ADC) approved for the treatment of cancer contain protease-cleavable linkers. ADCs that traffic to lysosomes traverse highly acidic late endosomes, while ADCs that recycle to the plasma membrane traffic through mildly acidic sorting and recycling endosomes. Although endosomes have been proposed to process cleavable ADCs, the precise identity of the relevant compartments and their relative contributions to ADC processing remain undefined. Here we show that a METxMET biparatopic antibody internalizes into sorting endosomes, rapidly traffics to recycling endosomes, and slowly reaches late endosomes. In agreement with the current model of ADC trafficking, late endosomes are the primary processing site of MET, EGFR, and prolactin receptor ADCs. Interestingly, recycling endosomes contribute up to 35% processing of the MET and EGFR ADCs in different cancer cells, mediated by cathepsin-L, which localizes to this compartment. Taken together, our findings provide insight into the relationship between transendosomal trafficking and ADC processing and suggest that receptors that traffic through recycling endosomes might be suitable targets for cleavable ADCs.


Assuntos
Vacinas Anticâncer , Imunoconjugados , Humanos , Imunoconjugados/farmacologia , Anticorpos , Endossomos , Receptores ErbB
18.
bioRxiv ; 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-36865176

RESUMO

Neurons coordinate their activity to produce an astonishing variety of motor behaviors. Our present understanding of motor control has grown rapidly thanks to new methods for recording and analyzing populations of many individual neurons over time. In contrast, current methods for recording the nervous system's actual motor output - the activation of muscle fibers by motor neurons - typically cannot detect the individual electrical events produced by muscle fibers during natural behaviors and scale poorly across species and muscle groups. Here we present a novel class of electrode devices ("Myomatrix arrays") that record muscle activity at unprecedented resolution across muscles and behaviors. High-density, flexible electrode arrays allow for stable recordings from the muscle fibers activated by a single motor neuron, called a "motor unit", during natural behaviors in many species, including mice, rats, primates, songbirds, frogs, and insects. This technology therefore allows the nervous system's motor output to be monitored in unprecedented detail during complex behaviors across species and muscle morphologies. We anticipate that this technology will allow rapid advances in understanding the neural control of behavior and in identifying pathologies of the motor system.

19.
Sci Adv ; 9(11): eade4395, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36930708

RESUMO

The interleukin-6 (IL-6) family cytokines signal through gp130 receptor homodimerization or heterodimerization with a second signaling receptor and play crucial roles in various cellular processes. We determined cryo-electron microscopy structures of five signaling complexes of this family, containing full receptor ectodomains bound to their respective ligands ciliary neurotrophic factor, cardiotrophin-like cytokine factor 1 (CLCF1), leukemia inhibitory factor, IL-27, and IL-6. Our structures collectively reveal similarities and differences in the assembly of these complexes. The acute bends at both signaling receptors in all complexes bring the membrane-proximal domains to a ~30 angstrom range but with distinct distances and orientations. We also reveal how CLCF1 engages its secretion chaperone cytokine receptor-like factor 1. Our data provide valuable insights for therapeutically targeting gp130-mediated signaling.


Assuntos
Antígenos CD , Interleucina-6 , Receptor gp130 de Citocina/metabolismo , Interleucina-6/metabolismo , Subunidade alfa de Receptor de Fator Inibidor de Leucemia/metabolismo , Microscopia Crioeletrônica , Antígenos CD/metabolismo , Glicoproteínas de Membrana/metabolismo , Citocinas/metabolismo
20.
Sci Transl Med ; 15(678): eabo0205, 2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36630481

RESUMO

The common γ chain (γc; IL-2RG) is a subunit of the interleukin (IL) receptors for the γc cytokines IL-2, IL-4, IL-7, IL-9, IL-15, and IL-21. The lack of appropriate neutralizing antibodies recognizing IL-2RG has made it difficult to thoroughly interrogate the role of γc cytokines in inflammatory and autoimmune disease settings. Here, we generated a γc cytokine receptor antibody, REGN7257, to determine whether γc cytokines might be targeted for T cell-mediated disease prevention and treatment. Biochemical, structural, and in vitro analysis showed that REGN7257 binds with high affinity to IL-2RG and potently blocks signaling of all γc cytokines. In nonhuman primates, REGN7257 efficiently suppressed T cells without affecting granulocytes, platelets, or red blood cells. Using REGN7257, we showed that γc cytokines drive T cell-mediated disease in mouse models of graft-versus-host disease (GVHD) and multiple sclerosis by affecting multiple aspects of the pathogenic response. We found that our xenogeneic GVHD mouse model recapitulates hallmarks of acute and chronic GVHD, with T cell expansion/infiltration into tissues and liver fibrosis, as well as hallmarks of immune aplastic anemia, with bone marrow aplasia and peripheral cytopenia. Our findings indicate that γc cytokines contribute to GVHD and aplastic anemia pathology by promoting these characteristic features. By demonstrating that broad inhibition of γc cytokine signaling with REGN7257 protects from immune-mediated disorders, our data provide evidence of γc cytokines as key drivers of pathogenic T cell responses, offering a potential strategy for the management of T cell-mediated diseases.


Assuntos
Anemia Aplástica , Doença Enxerto-Hospedeiro , Subunidade gama Comum de Receptores de Interleucina , Linfócitos T , Animais , Camundongos , Anemia Aplástica/metabolismo , Anticorpos Monoclonais/metabolismo , Citocinas/metabolismo , Doença Enxerto-Hospedeiro/metabolismo , Transdução de Sinais , Linfócitos T/metabolismo , Linfócitos T/patologia , Subunidade gama Comum de Receptores de Interleucina/antagonistas & inibidores , Subunidade gama Comum de Receptores de Interleucina/metabolismo , Primatas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA