Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 261(1-3): 149-55, 2000 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-11036986

RESUMO

Mercury speciation measurements during injections of 10 microg/m3 Hg0(g) into a 42-MJ/h combustion system containing gaseous O2-Ar- and O2-N2-rich mixtures indicate that 43 and 55% of the Hg (g) spike was transformed rapidly (< 0.1 s) to Hg2+X(g) within a refractory-lined heat exchanger where gas temperatures decrease from approximately 620 to 200 degrees C. O2(g) is the probable Hg0(g) oxidant (i.e. X = O2-). The apparent formation of HgO(g) involves a heterogeneous reaction with adsorbed Hg0 or O2 on refractory surfaces or a Hg0(g)-O2(g) reaction catalyzed by corundum (Al2O3) and/or rutile (TiO2) components of the refractory. The potential catalytic effects of Al2O3 and TiO2 on Hg0(g) oxidation were investigated by injecting Al2O3 and TiO2 powders into approximately 650 degrees C subbituminous coal (Powder River Basin, Montana, USA) combustion flue gas. On-line Hg0(g) and total mercury measurements indicate, however, that Al2O3 and TiO2 injections were ineffective in promoting the formation of additional Hg2+X(g). Apparently, either the chemically complex flue gas hindered the catalytic effects of Al2O3 and TiO2, or these compounds are simply not Hg0(g) oxidation catalysts.

2.
J Hazard Mater ; 74(1-2): 61-79, 2000 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-10781718

RESUMO

Activated carbon sorbents have the potential to be an effective means of mercury control in combustion systems. Reactions of activated carbons in flow systems with mercury and gas stream components were investigated to determine the types of chemical interactions that occur on the sorbent surface. The effects of carbon type, particle size, temperature, and reactive gases were studied. Sorption kinetics and capacities for lignite- and bituminous-based carbons were compared with those for catalytic carbons at temperatures of 107 degrees C, 150 degrees C, and 163 degrees C. In the air and baseline gas studies, the catalytic carbons exhibited far better sorption than the lignite- and bituminous-derived carbons. With the catalytic carbons, the greater sorption kinetics and capacity in an air stream or baseline gas composition compared with nitrogen provides a clear demonstration that O(2) is required in the gas stream for higher reactivities and capacities. Thus, a catalytic chemisorption mechanism predominates for the sorption of mercury at these conditions. The reaction kinetics are inversely proportional to the temperature, indicating that a preliminary physisorption step with mercury associating with a surface site is rate-determining. In synthetic flue gas streams containing HCl (50 ppm), the sorption kinetics of the catalytic carbon are slightly inferior to those of lignite-based carbon. Thus, the reaction is dominated by a different interaction, where HCl reacts with mercury on the carbon surface and the oxidation sites on the catalytic carbon apparently have no advantage. Granular and fine-particle carbons gave similar results in flue gas streams.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...