Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Soft Matter ; 12(47): 9549-9560, 2016 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-27834430

RESUMO

Using numerical simulations, we study the dynamical evolution of particles interacting via competing long-range repulsion and short-range attraction in two dimensions. The particles are compressed using a time-dependent quasi-one dimensional trough potential that controls the local density, causing the system to undergo a series of structural phase transitions from a low density clump lattice to stripes, voids, and a high density uniform state. The compression proceeds via slow elastic motion that is interrupted with avalanche-like bursts of activity as the system collapses to progressively higher densities via plastic rearrangements. The plastic events vary in magnitude from small rearrangements of particles, including the formation of quadrupole-like defects, to large-scale vorticity and structural phase transitions. In the dense uniform phase, the system compresses through row reduction transitions mediated by a disorder-order process. We characterize the rearrangement events by measuring changes in the potential energy, the fraction of sixfold coordinated particles, the local density, and the velocity distribution. At high confinements, we find power law scaling of the velocity distribution during row reduction transitions. We observe hysteresis under a reversal of the compression when relatively few plastic rearrangements occur. The decompressing system exhibits distinct phase morphologies, and the phase transitions occur at lower compression forces as the system expands compared to when it is compressed.

2.
Soft Matter ; 12(41): 8606-8615, 2016 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-27714306

RESUMO

Using computer simulations, we study a two-dimensional system of sterically interacting self-mobile run-and-tumble disk-shaped particles with an underlying periodic quasi-one-dimensional asymmetric substrate, and show that a rich variety of collective active ratchet behaviors arise as a function of particle density, activity, substrate period, and the maximum force exerted by the substrate. The net dc drift, or ratchet transport flux, is nonmonotonic since it increases with increased activity but is diminished by the onset of self-clustering of the active particles. Increasing the particle density decreases the ratchet transport flux for shallow substrates but increases the ratchet transport flux for deep substrates due to collective hopping events. At the highest particle densities, the ratchet motion is destroyed by a self-jamming effect. We show that it is possible to realize reversals of the direction of the net dc drift in the deep substrate limit when multiple rows of active particles can be confined in each substrate minimum, permitting emergent particle-like excitations to appear that experience an inverted effective substrate potential. We map out a phase diagram of the forward and reverse ratchet effects as a function of the particle density, activity, and substrate properties.

3.
Sci Rep ; 5: 8000, 2015 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-25613839

RESUMO

We examine driven dislocation assemblies and show that they can exhibit a set of dynamical phases remarkably similar to those of driven systems with quenched disorder such as vortices in superconductors, magnetic domain walls, and charge density wave materials. These phases include pinned-jammed, fluctuating, and dynamically ordered states, and each produces distinct dislocation patterns as well as specific features in the noise fluctuations and transport properties. Our work suggests that many of the results established for systems with quenched disorder undergoing plastic depinning transitions can be applied to dislocation systems, providing a new approach for understanding pattern formation and dynamics in these systems.

4.
Soft Matter ; 10(38): 7502-10, 2014 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-25123498

RESUMO

We examine a two-dimensional system of sterically repulsive interacting disks where each particle runs in a random direction. This system is equivalent to a run-and-tumble dynamics system in the limit where the run time is infinite. At low densities, we find a strongly fluctuating state composed of transient clusters. Above a critical density that is well below the density at which non-active particles would crystallize, the system can organize into a drifting quiescent or frozen state where the fluctuations are lost and large crystallites form surrounded by a small density of individual particles. Although all the particles are still moving, their paths form closed orbits. The average transient time to organize into the quiescent state diverges as a power law upon approaching the critical density from above. We compare our results to the random organization observed for periodically sheared systems that can undergo an absorbing transition from a fluctuating state to a dynamical non-fluctuating state. In the random organization studies, the system organizes to a state in which the particles no longer interact; in contrast, we find that the randomly running active matter organizes to a strongly interacting dynamically jammed state. We show that the transition to the frozen state is robust against a certain range of stochastic fluctuations. We also examine the effects of adding a small number of pinned particles to the system and find that the transition to the frozen state shifts to significantly lower densities and arises via the nucleation of faceted crystals centered at the obstacles.

5.
Soft Matter ; 10(33): 6332-8, 2014 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-25030212

RESUMO

We numerically examine the two-dimensional ordering of a stripe forming system of particles with competing long-range repulsion and short-range attraction in the presence of a quasi-one-dimensional corrugated substrate. As a function of increasing substrate strength or period we show that a remarkable variety of distinct orderings can be realized, including modulated stripes, prolate clump phases, two dimensional ordered kink structures, crystalline void phases, and smectic phases. Additionally in some cases the stripes align perpendicular to the substrate troughs. Our results suggest that a new route to self assembly for systems with competing interactions can be achieved through the addition of a simple periodic modulated substrate.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...