Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Cell Environ ; 46(7): 2206-2221, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37151160

RESUMO

In soil, arbuscular mycorrhizal fungi (AMF) meet the roots of both host and presumed nonhost plants, but the interactional mechanisms of AMF with and functional relevance for nonhost plants is little known. Here we show AMF can colonize an individually grown nonhost plant, Arabidopsis thaliana, and suppress the growth of Arabidopsis and two nonhost Brassica crops. This inhibitory effect increased with increasing AMF inoculum density, and was independent of AMF species or nutrient availability. 13 C isotope labeling and physiological analyses revealed no significant carbon-phosphorus exchange between Arabidopsis and AMF, indicating a lack of nutritional function in this interaction. AMF colonization activated the danger-associated peptide Pep-PEPR signaling pathway, and caused clear defense responses in Arabidopsis. The impairment of Pep-PEPR signaling in nonhost plants greatly compromised AMF-triggered defensive responses and photosynthesis suppression, leading to higher colonization rates and reduced growth suppression upon AMF inoculation. Pretreatment with Pep peptide decreased AMF colonization, and largely substituted for AMF-induced growth suppression in nonhosts, confirming that the Pep-PEPR pathway is a key participant in resistance to AMF colonization and in mediating growth suppression of nonhost plants. This work greatly increases our knowledge about the functional relevance of AMF and their mechanisms of interactions with nonhost plants.


Assuntos
Arabidopsis , Micorrizas , Humanos , Micorrizas/fisiologia , Arabidopsis/metabolismo , Fósforo/metabolismo , Carbono , Fungos , Raízes de Plantas/metabolismo , Peptídeos , Transdução de Sinais
2.
Sci Adv ; 7(34)2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34417179

RESUMO

Ecosystems provide multiple services to humans. However, agricultural systems are usually evaluated on their productivity and economic performance, and a systematic and quantitative assessment of the multifunctionality of agroecosystems including environmental services is missing. Using a long-term farming system experiment, we evaluated and compared the agronomic, economic, and ecological performance of the most widespread arable cropping systems in Europe: organic, conservation, and conventional agriculture. We analyzed 43 agroecosystem properties and determined overall agroecosystem multifunctionality. We show that organic and conservation agriculture promoted ecosystem multifunctionality, especially by enhancing regulating and supporting services, including biodiversity preservation, soil and water quality, and climate mitigation. In contrast, conventional cropping showed reduced multifunctionality but delivered highest yield. Organic production resulted in higher economic performance, thanks to higher product prices and additional support payments. Our results demonstrate that different cropping systems provide opposing services, enforcing the productivity-environmental protection dilemma for agroecosystem functioning.

3.
Mycorrhiza ; 30(4): 455-466, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32472206

RESUMO

Tomato roots can be colonized by both mycorrhizal fungi and the endophytic fungus Serendipita indica. This study was aimed at assessment of the impact of single or dual inoculation with R. irregularis and S. indica on tomato growth under saline conditions. We used signature compounds to estimate the abundance of each of these two fungi (fatty acid 16:1ω5 for R. irregularis and ergosterol for S. indica) in roots. A randomized block design was applied with four types of inoculation (no fungus, R. irregularis, S. indica or S. indica + R. irregularis) at different levels of salinity (1.2, 5, and 10 dS/m) with four replications per treatment. The plant dry weight was slightly higher in R. irregularis- than S. indica-inoculated plants, and the highest plant biomass was achieved with dual inoculation. R. irregularis increased the content of the neutral lipid fatty acid 16:1ω5 from 97 to 5300 nmol/g and phospholipid fatty acid 16:1ω5 from 8 to 141 nmol/g in roots (at a salinity level of 1.2 dS m-1), but the increases were lower at higher levels of salinity. Moreover, both these arbuscular mycorrhizal fungal markers were slightly decreased in the presence of S. indica. Root ergosterol increased from 7 to 114 µg g-1 with S. indica inoculation. With increasing salinity, the concentration of ergosterol in roots decreased. Inoculation with R. irregularis caused a decrease in root ergosterol. Increasing salinity resulted in an increase of Cl and Na in tomato shoots, but the increase was significantly lower in single- or dual-inoculated plants in contrast to the control plants.


Assuntos
Basidiomycota , Glomeromycota , Micorrizas , Solanum lycopersicum , Lipídeos , Raízes de Plantas
4.
Plant Cell Environ ; 43(9): 2054-2065, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32400909

RESUMO

Plant carbon (C) partitioning-the relative use of photosynthates for biomass production, respiration, and other plant functions-is a key but poorly understood ecosystem process. In an experiment with Zea mays, with or without arbuscular mycorrhizal fungi (AMF), we investigated the effect of phosphorus (P) fertilization and AMF on plant C partitioning. Based on earlier studies, we expected C partitioning to biomass production (i.e., biomass production efficiency; BPE) to increase with increasing P addition due to reduced C partitioning to AMF. However, although plant growth was clearly stimulated by P addition, BPE did not increase. Instead, C partitioning to autotrophic respiration increased. These results contrasted with our expectations and with a previous experiment in the same set-up where P addition increased BPE while no effect on autotropic respiration was found. The comparison of both experiments suggests a key role for AMF in explaining these contrasts. Whereas in the previous experiment substantial C partitioning to AMF reduced BPE under low P, in the current experiment, C partitioning to AMF was too low to directly influence BPE. Our results illustrate the complex influence of nutrient availability and mycorrhizal symbiosis on plant C partitioning.


Assuntos
Carbono/metabolismo , Fósforo/farmacologia , Zea mays/fisiologia , Processos Autotróficos , Biomassa , Micorrizas/fisiologia , Fósforo/metabolismo , Simbiose , Zea mays/efeitos dos fármacos
5.
Nature ; 560(7717): 233-237, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30069051

RESUMO

Soils harbour some of the most diverse microbiomes on Earth and are essential for both nutrient cycling and carbon storage. To understand soil functioning, it is necessary to model the global distribution patterns and functional gene repertoires of soil microorganisms, as well as the biotic and environmental associations between the diversity and structure of both bacterial and fungal soil communities1-4. Here we show, by leveraging metagenomics and metabarcoding of global topsoil samples (189 sites, 7,560 subsamples), that bacterial, but not fungal, genetic diversity is highest in temperate habitats and that microbial gene composition varies more strongly with environmental variables than with geographic distance. We demonstrate that fungi and bacteria show global niche differentiation that is associated with contrasting diversity responses to precipitation and soil pH. Furthermore, we provide evidence for strong bacterial-fungal antagonism, inferred from antibiotic-resistance genes, in topsoil and ocean habitats, indicating the substantial role of biotic interactions in shaping microbial communities. Our results suggest that both competition and environmental filtering affect the abundance, composition and encoded gene functions of bacterial and fungal communities, indicating that the relative contributions of these microorganisms to global nutrient cycling varies spatially.


Assuntos
Bactérias/isolamento & purificação , Biodiversidade , Planeta Terra , Fungos/isolamento & purificação , Microbiota/fisiologia , Microbiologia do Solo , Bactérias/genética , Código de Barras de DNA Taxonômico , Resistência Microbiana a Medicamentos/genética , Fungos/genética , Concentração de Íons de Hidrogênio , Metagenômica , Microbiota/genética , Oceanos e Mares , Chuva , Água do Mar/microbiologia
6.
ISME J ; 12(10): 2433-2445, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29899509

RESUMO

Improved understanding of the nutritional ecology of arbuscular mycorrhizal (AM) fungi is important in understanding how tropical forests maintain high productivity on low-fertility soils. Relatively little is known about how AM fungi will respond to changes in nutrient inputs in tropical forests, which hampers our ability to assess how forest productivity will be influenced by anthropogenic change. Here we assessed the influence of long-term inorganic and organic nutrient additions and nutrient depletion on AM fungi, using two adjacent experiments in a lowland tropical forest in Panama. We characterised AM fungal communities in soil and roots using 454-pyrosequencing, and quantified AM fungal abundance using microscopy and a lipid biomarker. Phosphorus and nitrogen addition reduced the abundance of AM fungi to a similar extent, but affected community composition in different ways. Nutrient depletion (removal of leaf litter) had a pronounced effect on AM fungal community composition, affecting nearly as many OTUs as phosphorus addition. The addition of nutrients in organic form (leaf litter) had little effect on any AM fungal parameter. Soil AM fungal communities responded more strongly to changes in nutrient availability than communities in roots. This suggests that the 'dual niches' of AM fungi in soil versus roots are structured to different degrees by abiotic environmental filters, and biotic filters imposed by the plant host. Our findings indicate that AM fungal communities are fine-tuned to nutrient regimes, and support future studies aiming to link AM fungal community dynamics with ecosystem function.


Assuntos
Florestas , Micorrizas/efeitos dos fármacos , Nitrogênio/farmacologia , Fósforo/farmacologia , Ecossistema , Fertilizantes , Fungos/fisiologia , Micorrizas/fisiologia , Nitrogênio/química , Nutrientes , Panamá , Fósforo/química , Folhas de Planta , Raízes de Plantas/microbiologia , Plantas , Solo , Microbiologia do Solo
7.
Glob Chang Biol ; 24(8): 3357-3367, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29345091

RESUMO

Microorganisms dominate the decomposition of organic matter and their activities are strongly influenced by temperature. As the carbon (C) flux from soil to the atmosphere due to microbial activity is substantial, understanding temperature relationships of microbial processes is critical. It has been shown that microbial temperature relationships in soil correlate with the climate, and microorganisms in field experiments become more warm-tolerant in response to chronic warming. It is also known that microbial temperature relationships reflect the seasons in aquatic ecosystems, but to date this has not been investigated in soil. Although climate change predictions suggest that temperatures will be mostly affected during winter in temperate ecosystems, no assessments exist of the responses of microbial temperature relationships to winter warming. We investigated the responses of the temperature relationships of bacterial growth, fungal growth, and respiration in a temperate grassland to seasonal change, and to 2 years' winter warming. The warming treatments increased winter soil temperatures by 5-6°C, corresponding to 3°C warming of the mean annual temperature. Microbial temperature relationships and temperature sensitivities (Q10 ) could be accurately established, but did not respond to winter warming or to seasonal temperature change, despite significant shifts in the microbial community structure. The lack of response to winter warming that we demonstrate, and the strong response to chronic warming treatments previously shown, together suggest that it is the peak annual soil temperature that influences the microbial temperature relationships, and that temperatures during colder seasons will have little impact. Thus, mean annual temperatures are poor predictors for microbial temperature relationships. Instead, the intensity of summer heat-spells in temperate systems is likely to shape the microbial temperature relationships that govern the soil-atmosphere C exchange.


Assuntos
Mudança Climática , Pradaria , Microbiologia do Solo , Temperatura , Bactérias/crescimento & desenvolvimento , Bactérias/metabolismo , Fungos/crescimento & desenvolvimento , Fungos/metabolismo , Temperatura Alta , Estações do Ano , Suécia
8.
Glob Chang Biol ; 24(6): 2607-2621, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29282822

RESUMO

Land-use changes, pollution and climate warming during the 20th century have caused changes in biodiversity across the world. However, in many cases, the environmental drivers are poorly understood. To identify and rank the drivers currently causing broad-scale floristic changes in N Europe, we analysed data from two vascular plant surveys of 200 randomly selected 2.5 × 2.5 km grid-squares in Scania, southernmost Sweden, conducted 1989-2006 and 2008-2015, respectively, and related the change in frequency (performance) of the species to a wide range of species-specific plant traits. We chose traits representing all plausible drivers of recent floristic changes: climatic change (northern distribution limit, flowering time), land-use change (light requirement, response to grazing/mowing, response to soil disturbance), drainage (water requirement), acidification (pH optimum), nitrogen deposition and eutrophication (N requirement, N fixation ability, carnivory, parasitism, mycorrhizal associations), pollinator decline (mode of reproduction) and changes in CO2 levels (photosynthetic pathway). Our results suggest that climate warming and changes in land-use were the main drivers of changes in the flora during the last decades. Climate warming appeared as the most influential driver, with northern distribution limit explaining 30%-60% of the variance in the GLMM models. However, the relative importance of the drivers differed among habitat types, with grassland species being affected the most by cessation of grazing/mowing and species of ruderal habitats by on-going concentration of both agriculture and human population to the most productive soils. For wetland species, only pH optimum was significantly related to species performance, possibly an effect of the increasing humification of acidic water bodies. An observed relative decline of mycorrhizal species may possibly be explained by decreasing nitrogen deposition resulting in less competition for phosphorus. We found no effect of shortage or decline of pollinating lepidopterans and bees.


Assuntos
Agricultura , Biodiversidade , Mudança Climática , Embriófitas/fisiologia , Dispersão Vegetal , Ecossistema , Embriófitas/crescimento & desenvolvimento , Suécia
10.
Glob Chang Biol ; 23(12): 5372-5382, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28675677

RESUMO

A decisive set of steps in the terrestrial carbon (C) cycle is the fixation of atmospheric C by plants and the subsequent C-transfer to rhizosphere microorganisms. With climate change winters are expected to become milder in temperate ecosystems. Although the rate and pathways of rhizosphere C input to soil could be impacted by milder winters, the responses remain unknown. To address this knowledge-gap, a winter-warming experiment was established in a seminatural temperate grassland to follow the C flow from atmosphere, via the plants, to different groups of soil microorganisms. In situ 13 CO2 pulse labelling was used to track C into signature fatty acids of microorganisms. The winter warming did not result in any changes in biomass of any of the groups of microorganisms. However, the C flow from plants to arbuscular mycorrhizal (AM) fungi, increased substantially by winter warming. Saprotrophic fungi also received large amounts of plant-derived C-indicating a higher importance for the turnover of rhizosphere C than biomass estimates would suggest-still, this C flow was unaffected by winter warming. AM fungi was the only microbial group positively affected by winter warming-the group with the closest connection to plants. Winter warming resulted in higher plant productivity earlier in the season, and this aboveground change likely induced plant nutrient limitation in warmed plots, thus stimulating the plant dependence on, and C allocation to, belowground nutrient acquisition. The preferential C allocation to AM fungi was at the expense of C flow to other microbial groups, which were unaffected by warming. Our findings imply that warmer winters may shift rhizosphere C-fluxes to become more AM fungal-dominated. Surprisingly, the stimulated rhizosphere C flow was matched by increased microbial turnover, leading to no accumulation of soil microbial biomass.


Assuntos
Carbono/metabolismo , Mudança Climática , Pradaria , Micorrizas/metabolismo , Rizosfera , Atmosfera/química , Ciclo do Carbono , Fungos/metabolismo , Micorrizas/fisiologia , Plantas/metabolismo , Plantas/microbiologia , Estações do Ano , Microbiologia do Solo
11.
Proc Biol Sci ; 284(1848)2017 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-28148744

RESUMO

The majority of terrestrial plants associate with arbuscular mycorrhizal (AM) fungi, which typically facilitate the uptake of limiting mineral nutrients by plants in exchange for plant carbon. However, hundreds of non-photosynthetic plant species-mycoheterotrophs-depend entirely on AM fungi for carbon as well as mineral nutrition. Mycoheterotrophs can provide insight into the operation and regulation of AM fungal relationships, but little is known about the factors, fungal or otherwise, that affect mycoheterotroph abundance and distribution. In a lowland tropical forest in Panama, we conducted the first systematic investigation into the influence of abiotic factors on the abundance and distribution of mycoheterotrophs, to ask whether the availability of nitrogen and phosphorus altered the occurrence of mycoheterotrophs and their AM fungal partners. Across a natural fertility gradient spanning the isthmus of Panama, and also in a long-term nutrient-addition experiment, mycoheterotrophs were entirely absent when soil exchangeable phosphate concentrations exceeded 2 mg P kg-1 Experimental phosphorus addition reduced the abundance of AM fungi, and also reduced the abundance of the specific AM fungal taxa required by the mycoheterotrophs, suggesting that the phosphorus sensitivity of mycoheterotrophs is underpinned by the phosphorus sensitivity of their AM fungal hosts. The soil phosphorus concentration of 2 mg P kg-1 also corresponds to a marked shift in tree community composition and soil phosphatase activity across the fertility gradient, suggesting that our findings have broad ecological significance.


Assuntos
Florestas , Micorrizas , Fósforo/análise , Plantas/microbiologia , Clima Tropical , Panamá , Raízes de Plantas , Solo/química
12.
New Phytol ; 214(1): 455-467, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28042878

RESUMO

Tropical forest productivity is sustained by the cycling of nutrients through decomposing organic matter. Arbuscular mycorrhizal (AM) fungi play a key role in the nutrition of tropical trees, yet there has been little experimental investigation into the role of AM fungi in nutrient cycling via decomposing organic material in tropical forests. We evaluated the responses of AM fungi in a long-term leaf litter addition and removal experiment in a tropical forest in Panama. We described AM fungal communities using 454-pyrosequencing, quantified the proportion of root length colonised by AM fungi using microscopy, and estimated AM fungal biomass using a lipid biomarker. AM fungal community composition was altered by litter removal but not litter addition. Root colonisation was substantially greater in the superficial organic layer compared with the mineral soil. Overall colonisation was lower in the litter removal treatment, which lacked an organic layer. There was no effect of litter manipulation on the concentration of the AM fungal lipid biomarker in the mineral soil. We hypothesise that reductions in organic matter brought about by litter removal may lead to AM fungi obtaining nutrients from recalcitrant organic or mineral sources in the soil, besides increasing fungal competition for progressively limited resources.


Assuntos
Florestas , Micorrizas/fisiologia , Folhas de Planta/fisiologia , Clima Tropical , Biodiversidade , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/microbiologia , Solo/química
13.
New Phytol ; 213(2): 874-885, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27643809

RESUMO

Agricultural fertilization significantly affects arbuscular mycorrhizal fungal (AMF) community composition. However, the functional implications of community shifts are unknown, limiting understanding of the role of AMF in agriculture. We assessed AMF community composition at four sites managed under the same nitrogen (N) and phosphorus (P) fertilizer regimes for 55 yr. We also established a glasshouse experiment with the same soils to investigate AMF-barley (Hordeum vulgare) nutrient exchange, using carbon (13 C) and 33 P isotopic labelling. N fertilization affected AMF community composition, reducing diversity; P had no effect. In the glasshouse, AMF contribution to plant P declined with P fertilization, but was unaffected by N. Barley C allocation to AMF also declined with P fertilization. As N fertilization increased, C allocation to AMF per unit of P exchanged increased. This occurred with and without P fertilization, and was concomitant with reduced barley biomass. AMF community composition showed no relationship with glasshouse experiment results. The results indicate that plants can reduce C allocation to AMF in response to P fertilization. Under N fertilization, plants allocate an increasing amount of C to AMF and receive relatively less P. This suggests an alteration in the terms of P-C exchange under N fertilization regardless of soil P status.


Assuntos
Agricultura , Carbono/metabolismo , Fertilizantes/efeitos adversos , Fungos/fisiologia , Hordeum/microbiologia , Micorrizas/fisiologia , Fósforo/metabolismo , Biomassa , Brotos de Planta/metabolismo
14.
PLoS One ; 10(4): e0123698, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25875745

RESUMO

Soil disturbance is recognized as an important driver of biodiversity in dry grasslands, and can therefore be implemented as a restoration measure. However, because community re-assembly following disturbance includes stochastic processes, a focus only on species richness or establishment success of particular species will not inform on how plant communities respond ecologically to disturbance. We therefore evaluated vegetation development following disturbance by quantifying species richness, species composition and functional trait composition. Degraded calcareous sandy grassland was subjected to experimental disturbance treatments (ploughing or rotavation), and the vegetation was surveyed during four subsequent years of succession. Treated plots were compared with control plots representing untreated grassland, as well as nearby plots characterized by plant communities representing the restoration target. Species richness and functional diversity both increased in response to soil disturbance, and rotavation, but not ploughing, had a persistent positive effect on the occurrence of specialist species of calcareous sandy grassland. However, no type of soil disturbance caused the plant species composition to develop towards the target vegetation. The disturbance had an immediate and large impact on the vegetation, but the vegetation developed rapidly back towards the control sites. Plant functional composition analysis indicated that the treatments created habitats different both from control sites and target sites. Community-weighted mean Ellenberg indicator values suggested that the observed plant community response was at least partially due to an increase in nitrogen and water availability following disturbance. This study shows that a mild type of disturbance, such as rotavation, may be most successful in promoting specialist species in calcareous sandy grassland, but that further treatments are needed to reduce nutrient availability. We conclude that a functional trait based analysis provides additional information of the vegetation response and the abiotic conditions created, complementing the information from the species composition.


Assuntos
Pradaria , Plantas/metabolismo , Característica Quantitativa Herdável , Solo , Análise de Variância , Biodiversidade , Análise de Componente Principal , Especificidade da Espécie , Suécia
15.
Appl Environ Microbiol ; 81(8): 2958-65, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25681190

RESUMO

Application of a mycorrhizal inoculum could be one way to increase the yield of rice plants and reduce the application of fertilizer. We therefore studied arbuscular mycorrhizal fungi (AMF) in the roots of wetland rice (Oryza sativa L.) collected at the seedling, tillering, heading, and ripening stages in four paddy wetlands that had been under a high-input and intensively irrigated rice cultivation system for more than 20 years. It was found that AMF colonization was mainly established in the heading and ripening stages. The AMF community structure was characterized in rhizosphere soils and roots from two of the studied paddy wetlands. A fragment covering the partial small subunit (SSU), the whole internal transcribed spacer (ITS), and the partial large subunit (LSU) rRNA operon regions of AMF was amplified, cloned, and sequenced from roots and soils. A total of 639 AMF sequences were obtained, and these were finally assigned to 16 phylotypes based on a phylogenetic analysis, including 12 phylotypes from Glomeraceae, one phylotype from Claroideoglomeraceae, two phylotypes from Paraglomeraceae, and one unidentified phylotype. The AMF phylotype compositions in the soils were similar between the two surveyed sites, but there was a clear discrepancy between the communities obtained from root and soil. The relatively high number of AMF phylotypes at the surveyed sites suggests that the conditions are suitable for some species of AMF and that they may have an important function in conventional rice cultivation systems. The species richness of root-colonizing AMF increased with the growth of rice, and future studies should consider the developmental stages of this crop in the exploration of AMF function in paddy wetlands.


Assuntos
Agricultura/métodos , Micorrizas/genética , Micorrizas/metabolismo , Oryza/microbiologia , Raízes de Plantas/microbiologia , Microbiologia do Solo , DNA Fúngico/genética , DNA Fúngico/metabolismo , DNA Intergênico/genética , DNA Intergênico/metabolismo , Dados de Sequência Molecular , Micorrizas/classificação , Oryza/crescimento & desenvolvimento , Filogenia , Análise de Sequência de DNA , Áreas Alagadas
17.
PLoS One ; 9(3): e90998, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24621928

RESUMO

Understanding the land use history has proven crucial for the conservation of biodiversity in the agricultural landscape. In southern Sweden, very small and fragmented areas of the disturbance-dependent habitat xeric sand calcareous grassland support a large number of threatened and rare plants and animals. In order to find out if historical land use could explain variation in present-day habitat quality, the land use on eight such sites was traced back to the 18th century and compared with key factors such as the amount of bare sand, lime content and P availability. There was no support for the common explanation of the decline in xeric sand calcareous grassland being caused by abandonment of agricultural fields during the last century. Instead, fertilization history was the main explanation for the difference in depletion depth of CaCO3 seen between the sites. The decline in xeric sand calcareous grassland since the 18th century is most probably the result of the drastic changes in land use during the 19th century, which put an end to the extensive sand drift. Since cultivation was shown to have played an important role in the historical land use of xeric sand calcareous grassland, grazing alone may not be the optimal management option for these grasslands. Instead more drastic measures are needed to restore the high calcium content and maintain proper disturbance levels.


Assuntos
Conservação dos Recursos Naturais , Pradaria , Agricultura , Biodiversidade , Florestas , Solo , Suécia
18.
Mycorrhiza ; 24(6): 443-51, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24435931

RESUMO

The regulation of the structural composition and complexity of the mycelium of arbuscular mycorrhizal (AM) fungi is not well understood due to their obligate biotrophic nature. The aim of this study was to investigate the structure of extraradical mycelium at high and low availability of carbon (C) to the roots and phosphorus (P) to the fungus. We used monoxenic cultures of the AM fungus Rhizophagus irregularis (formerly Glomus intraradices) with transformed carrot roots as the host in a cultivation system including a root-free compartment into which the extraradical mycelium could grow. We found that high C availability increased hyphal length and spore production and anastomosis formation within individual mycelia. High P availability increased the formation of branched absorbing structures and reduced spore production and the overall length of runner hyphae. The complexity of the mycelium, as indicated by its fractal dimensions, increased with both high C and P availability. The results indicate that low P availability induces a growth pattern that reflects foraging for both P and C. Low C availability to AM roots could still support the explorative development of the mycelium when P availability was low. These findings help us to better understand the development of AM fungi in ecosystems with high P input and/or when plants are subjected to shading, grazing or any management practice that reduces the photosynthetic ability of the plant.


Assuntos
Carbono/metabolismo , Daucus carota/microbiologia , Glomeromycota/crescimento & desenvolvimento , Micélio/crescimento & desenvolvimento , Micorrizas/crescimento & desenvolvimento , Fósforo/metabolismo , Glomeromycota/metabolismo , Micélio/metabolismo , Micorrizas/metabolismo , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Plantas , Esporos Fúngicos/crescimento & desenvolvimento , Esporos Fúngicos/metabolismo
19.
Fungal Biol ; 115(7): 643-8, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21724170

RESUMO

We investigated element accumulation in vesicles of the arbuscular mycorrhizal (AM) fungus Glomus intraradices, extracted from the roots of inoculated leek plants. The elemental composition (elements heavier than Mg) was quantified using particle-induced X-ray emission (PIXE), in combination with scanning transmission ion microscopy (STIM). In vesicles, P was the most abundant of the elements analysed, followed by Ca, S, Si and K. We analysed 12 vesicles from two root systems and found that the variation between vesicles was particularly high for P and Si. The P content related positively to Si, Zn and K, while its relation to Cl fitted to a negative power function. Vesicle transects showed that P and K were present in central parts, while Ca was present mainly near the vesicle surfaces. The results showed that P is an important part (0.5% of the dry weight) of the vesicle content and that the distribution of some elements, within mycelia, may be strongly correlated.


Assuntos
Vesículas Citoplasmáticas/química , Glomeromycota/química , Micorrizas/química , Espectrometria por Raios X/métodos , Elementos Químicos , Glomeromycota/isolamento & purificação , Micorrizas/isolamento & purificação , Cebolas/microbiologia , Raízes de Plantas/microbiologia
20.
Oecologia ; 167(3): 809-19, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21614616

RESUMO

We have studied how disturbance by ploughing and rotavation affects the carbon (C) flow to arbuscular mycorrhizal (AM) fungi in a dry, semi-natural grassland. AM fungal biomass was estimated using the indicator neutral lipid fatty acid (NLFA) 16:1ω5, and saprotrophic fungal biomass using NLFA 18:2ω6,9. We labeled vegetation plots with (13)CO(2) and studied the C flow to the signature fatty acids as well as uptake and allocation in plants. We found that AM fungal biomass in roots and soil decreased with disturbance, while saprotrophic fungal biomass in soil was not influenced by disturbance. Rotavation decreased the (13)C enrichment in NLFA 16:1ω5 in soil, but (13)C enrichment in the AM fungal indicator NLFA 16:1ω5 in roots or soil was not influenced by any other disturbance. In roots, (13)C enrichment was consistently higher in NLFA 16:1ω5 than in crude root material. Grasses (mainly Festuca brevipila) decreased as a result of disturbance, while non-mycorrhizal annual forbs increased. This decreases the potential for mycorrhizal C sequestration and may have been the main reason for the reduced mycorrhizal C allocation found in disturbed plots. Disturbance decreased the soil ammonium content but did not change the pH, nitrate or phosphate availability. The overall effect of disturbance on C allocation was that more of the C in AM fungal mycelium was directed to the external phase. Furthermore, the functional identity of the plants seemed to play a minor role in the C cycle as no differences were seen between different groups, although annuals contained less AM fungi than the other groups.


Assuntos
Carbono/metabolismo , Micorrizas/metabolismo , Poaceae/metabolismo , Dióxido de Silício/química , Microbiologia do Solo , Solo/química , Biomassa , Ciclo do Carbono , Isótopos de Carbono/metabolismo , Ácidos Graxos/metabolismo , Micorrizas/crescimento & desenvolvimento , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Poaceae/crescimento & desenvolvimento , Poaceae/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...