Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(3)2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-35163230

RESUMO

Xylanases are of great value in various industries, including paper, food, and biorefinery. Due to their biotechnological production, these enzymes can contain a variety of post-translational modifications, which may have a profound effect on protein function. Understanding the structure-function relationship can guide the development of products with optimal performance. We have developed a workflow for the structural and functional characterization of an endo-1,4-ß-xylanase (ENDO-I) produced by Aspergillus niger with and without applying thermal stress. This workflow relies on orthogonal native separation techniques to resolve proteoforms. Mass spectrometry and activity assays of separated proteoforms permitted the establishment of structure-function relationships. The separation conditions were focus on balancing efficient separation and protein functionality. We employed size exclusion chromatography (SEC) to separate ENDO-I from other co-expressed proteins. Charge variants were investigated with ion exchange chromatography (IEX) and revealed the presence of low abundant glycated variants in the temperature-stressed material. To obtain better insights into the effect on glycation on function, we enriched for these species using boronate affinity chromatography (BAC). The activity measurements showed lower activity of glycated species compared to the non-modified enzyme. Altogether, this workflow allowed in-depth structural and functional characterization of ENDO-I proteoforms.


Assuntos
Endo-1,4-beta-Xilanases/metabolismo , Endo-1,4-beta-Xilanases/fisiologia , Endo-1,4-beta-Xilanases/ultraestrutura , Aspergillus niger/genética , Aspergillus niger/metabolismo , Cromatografia em Gel/métodos , Cromatografia por Troca Iônica/métodos , Cromatografia Líquida/métodos , Glicosilação , Espectrometria de Massas/métodos , Modelos Moleculares , Processamento de Proteína Pós-Traducional , Proteínas/metabolismo , Relação Estrutura-Atividade
2.
J Proteome Res ; 20(10): 4875-4885, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34515489

RESUMO

The prolyl-alanyl-specific endoprotease (EndoPro) is an industrial enzyme produced in Aspergillus niger. EndoPro is mainly used for food applications but also as a protease in proteomics. In-depth characterization of this enzyme is essential to understand its structural features and functionality. However, there is a lack of analytical methods capable of maintaining both the structural and functional integrity of separated proteoforms. In this study, we developed an anion exchange (AEX) method coupled to native mass spectrometry (MS) for profiling EndoPro proteoforms. Moreover, we investigated purified EndoPro proteoforms with complementary MS-based approaches, including released N-glycan and glycopeptide analysis, to obtain a comprehensive overview of the structural heterogeneity. We showed that EndoPro has at least three sequence variants and seven N-glycosylation sites occupied by high-mannose glycans that can be phosphorylated. Each glycosylation site showed high microheterogeneity with ∼20 glycans per site. The functional characterization of fractionated proteoforms revealed that EndoPro proteoforms remained active after AEX-separation and the specificity of these proteoforms did not depend on N-glycan phosphorylation. Nevertheless, our data confirmed a strong pH dependence of EndoPro cleavage activity. Altogether, our study demonstrates that AEX-MS is an excellent tool to characterize complex industrial enzymes under native conditions.


Assuntos
Aspergillus niger , Proteômica , Glicosilação , Espectrometria de Massas , Proteínas
3.
FEBS J ; 287(14): 2979-2997, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31863553

RESUMO

Mass spectrometry-based proteomics experiments typically start with the digestion of proteins using trypsin, chosen because of its high specificity, availability, and ease of use. It has become apparent that the sole use of trypsin may impose certain limits on our ability to grasp the full proteome, missing out particular sites of post-translational modifications, protein segments, or even subsets of proteins. To tackle this problem, alternative proteases have been introduced and shown to lead to an increase in the detectable (phospho)proteome. Here, we argue that there may be further room for improvement and explore the protease EndoPro. For optimal peptide identification rates, we explored multiple peptide fragmentation techniques (HCD, ETD, and EThcD) and employed Byonic as search algorithm. We obtain peptide IDs for about 40% of the MS2 spectra (66% for trypsin). EndoPro cleaves with high specificity at the C-terminal site of Pro and Ala residues and displays activity in a broad pH range, where we focused on its performance at pH = 2 and 5.5. The proteome coverage of EndoPro at these two pH values is rather distinct, and also complementary to the coverage obtained with trypsin. As about 40% of mammalian protein phosphorylations are proline-directed, we also explored the performance of EndoPro in phosphoproteomics. EndoPro extends the coverable phosphoproteome substantially, whereby both the, at pH = 2 and 5.5, acquired phosphoproteomes are complementary to each other and to the phosphoproteome obtained using trypsin. Hence, EndoPro is a powerful tool to exploit in (phospho)proteomics applications.


Assuntos
Proteínas de Neoplasias/metabolismo , Peptídeo Hidrolases/metabolismo , Fosfoproteínas/metabolismo , Prolina/metabolismo , Proteoma/metabolismo , Proteômica/métodos , Tripsina/metabolismo , Células HeLa , Humanos , Fosforilação , Proteólise , Proteoma/análise
4.
Methods Mol Biol ; 985: 391-406, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23417814

RESUMO

Genomics is based on the ability to determine the transcriptome, proteome, and metabolome of a cell. These technologies only have added value when they are integrated and based on robust and reproducible workflows. This chapter describes the experimental design, sampling, sample pretreatment, data evaluation, integration, and interpretation. The actual generation of the data is not covered in this chapter since it is highly depended on available equipment and infrastructure. The enormous amount of data generated by these technologies are integrated and interpreted inorder to generate leads for strain and process improvement. Biostatistics are becoming very important for the whole work flow therefore, some general recommendations how to set up experimental design and how to use biostatistics in enhancing the quality of the data and the selection of biological relevant leads for strain engineering and target identification are described.


Assuntos
Interpretação Estatística de Dados , Fungos/genética , Fungos/metabolismo , Perfilação da Expressão Gênica/métodos , Engenharia Metabólica , Metaboloma , Modelos Estatísticos , Proteoma/genética , Proteoma/metabolismo , Proteômica , RNA Fúngico/genética , RNA Fúngico/isolamento & purificação , RNA Fúngico/metabolismo , Biologia de Sistemas
5.
Fungal Genet Biol ; 46 Suppl 1: S141-52, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18824119

RESUMO

The filamentous fungus Aspergillus niger is widely exploited for industrial production of enzymes and organic acids. An integrated genomics approach was developed to determine cellular responses of A. niger to protein production in well-controlled fermentations. Different protein extraction methods in combination with automated sample processing and protein identification allowed quantitative analysis of 898 proteins. Three different enzyme overproducing strains were compared to their isogenic fungal host strains. Clear differences in response to the amount and nature of the overproduced enzymes were observed. The corresponding genes of the differentially expressed proteins were studied using transcriptomics. Genes that were up-regulated both at the proteome and transcriptome level were selected as leads for generic strain improvement. Up-regulated proteins included proteins involved in carbon and nitrogen metabolism as well as (oxidative) stress response, and proteins involved in protein folding and endoplasmic reticulum-associated degradation (ERAD). Reduction of protein degradation through the removal of the ERAD factor doaA combined with overexpression of the oligosaccharyl transferase sttC in A. niger overproducing beta-glucuronidase (GUS) strains indeed resulted in a small increase in GUS expression.


Assuntos
Aspergillus niger/genética , Aspergillus niger/metabolismo , Proteínas Fúngicas/biossíntese , Proteínas Fúngicas/genética , Genômica , Microbiologia Industrial , Perfilação da Expressão Gênica , Glucuronidase/biossíntese , Glucuronidase/genética , Proteoma/análise
6.
Mol Syst Biol ; 2: 2006.0026, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16738570

RESUMO

We compared the response of Saccharomyces cerevisiae to carbon (glucose) and nitrogen (ammonia) limitation in chemostat cultivation at the proteome level. Protein levels were differentially quantified using unlabeled and 15N metabolically labeled yeast cultures. A total of 928 proteins covering a wide range of isoelectric points, molecular weights and subcellular localizations were identified. Stringent statistical analysis identified 51 proteins upregulated in response to glucose limitation and 51 upregulated in response to ammonia limitation. Under glucose limitation, typical glucose-repressed genes encoding proteins involved in alternative carbon source utilization, fatty acids beta-oxidation and oxidative phosphorylation displayed an increased protein level. Proteins upregulated in response to nitrogen limitation were mostly involved in scavenging of alternative nitrogen sources and protein degradation. Comparison of transcript and protein levels clearly showed that upregulation in response to glucose limitation was mainly transcriptionally controlled, whereas upregulation in response to nitrogen limitation was essentially controlled at the post-transcriptional level by increased translational efficiency and/or decreased protein degradation. These observations underline the need for multilevel analysis in yeast systems biology.


Assuntos
Proteômica/métodos , Saccharomyces cerevisiae/metabolismo , Amônia/metabolismo , Meios de Cultura/farmacologia , Glucose/metabolismo , Saccharomyces cerevisiae/citologia , Proteínas de Saccharomyces cerevisiae/análise , Regulação para Cima/efeitos dos fármacos , Leveduras/citologia , Leveduras/metabolismo
7.
FEMS Yeast Res ; 6(3): 381-92, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16630278

RESUMO

Kluyveromyces lactis is both scientifically and biotechnologically one of the most important non-Saccharomyces yeasts. Its biotechnological significance builds on its history of safe use in the food industry and its well-known ability to produce enzymes like lactase and bovine chymosin on an industrial scale. In this article, we review the various strains, genetic techniques and molecular tools currently available for the use of K. lactis as a host for protein expression. Additionally, we present data illustrating the recent use of proteomics studies to identify cellular bottlenecks that impede heterologous protein expression.


Assuntos
Kluyveromyces/genética , Kluyveromyces/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Fúngicas/biossíntese , Proteínas Fúngicas/genética , Engenharia Genética/métodos , Microbiologia Industrial , Proteínas Recombinantes/genética
8.
Mol Plant Microbe Interact ; 19(3): 215-26, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16570652

RESUMO

A proportion of the Nod factors of some Rhizobium leguminosarum bv. trifolii strains is characterized by the presence of highly unsaturated fatty acyl chains containing trans double bonds in conjugation with the carbonyl group of the glycan oligosaccharide backbone. These fatty acyl chains are C18:3, C20:3, C18:4, or C20:4 and have UV-absorption maxima at 303 and 330 nm. These Nod factors are presumed to be important for host-specific nodulation on clover species. However, in wild-type R. leguminosarum bv. trifolii ANU843, Nod factors with these characteristic acyl chains were not observed using standard growth conditions. They were observed only when nod genes were present in multiple copies or when transcription was artificially increased to higher levels by introduction of extra copies of the transcriptional regulator gene nodD. In a screen for the genetic requirements for production of the Nod factors with these characteristic structures, it was found that the region downstream of nodF and nodE is essential for the presence of highly unsaturated fatty acyl moieties. Mu-lacZ insertion in this region produced a mutant that did not produce detectable levels of the highly unsaturated fatty acyl-bearing Nod factors. The Mu-lacZ insertion was translationally fused to a putative new gene, designated nodR, in the nodE-nodL intergenic region; however, no predicted function for the putative NodR protein has been obtained from database homology searches. In a set of 12 wild-type strains of R. leguminosarum by. trifolii originating from various geographical regions that were analyzed for the presence of a nodR-like gene, it was found that seven strains carry a homologous NodR open reading frame. Taken together, our results suggest a tightly controlled regulation of nod genes, in which we propose that it is the balance of transcriptional levels of nodFE and the nodRL genes that is critical for determining the presence of highly unsaturated fatty acyl moieties in the Nod factors produced by R. leguminosarum bv. trifolii.


Assuntos
Proteínas de Bactérias/metabolismo , Lipopolissacarídeos/metabolismo , Rhizobium leguminosarum/metabolismo , Proteínas de Bactérias/genética , Configuração de Carboidratos , Regulação Bacteriana da Expressão Gênica , Lipopolissacarídeos/química , Medicago/metabolismo , Medicago/microbiologia , Dados de Sequência Molecular , Fases de Leitura Aberta , Raízes de Plantas/metabolismo , Rhizobium leguminosarum/genética , Especificidade da Espécie
9.
Mol Cell Proteomics ; 4(1): 1-11, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15502163

RESUMO

The use of chemostat culturing enables investigation of steady-state physiological characteristics and adaptations to nutrient-limited growth, while all other relevant growth conditions are kept constant. We examined and compared the proteomic response of wild-type Saccharomyces cerevisiae CEN.PK113-7D to growth in aerobic chemostat cultures limited for carbon sources being either glucose or ethanol. To obtain a global overview of changes in the proteome, we performed triplicate analyses using two-dimensional gel electrophoresis and identified proteins of interest using MS. Relative quantities of about 400 proteins were obtained and analyzed statistically to determine which protein steady-state expression levels changed significantly under glucose- or ethanol-limited conditions. Interestingly, only enzymes involved in central carbon metabolism showed a significant change in steady-state expression, whereas expression was only detected in one of both carbon source-limiting conditions for 15 of these enzymes. Side effects that were previously reported for batch cultivation conditions, such as responses to continuous variation of specific growth rate, to carbon-catabolite repression, and to accumulation of toxic substrates, were not observed. Moreover, by comparing our proteome data with corresponding mRNA data, we were able to unravel which processes in the central carbon metabolism were regulated at the level of the proteome, and which processes at the level of transcriptome. Importantly, we show here that the combined approach of chemostat cultivation and comprehensive proteome analysis allowed us to study the primary effect of single limiting conditions on the yeast proteome.


Assuntos
Proteoma/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/crescimento & desenvolvimento , Aerobiose , Eletroforese em Gel Bidimensional , Etanol/metabolismo , Fermentação , Glucose/metabolismo , Proteoma/análise , Proteômica , Proteínas de Saccharomyces cerevisiae/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...