Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ground Water ; 52(5): 685-93, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24102236

RESUMO

A new operational paradigm is presented for small-scale aquifer storage and recovery systems (ASR) in saline aquifers. Regular ASR is often not feasible for small-scale storage in saline aquifers because fresh water floats to the top of the aquifer where it is unrecoverable. In the new paradigm, fresh water storage is combined with salt water extraction from below the fresh water cone. The salt water extraction counteracts the buoyancy due to the density difference between fresh water and salt water, thus preventing the fresh water from floating up. The proposed approach is applied to assess the feasibility of ASR for the seasonal storage of fresh water produced by desalination plants in tourist resorts along the Egyptian Red Sea coast. In these situations, the continuous extraction of salt water can be used for desalination purposes. An analytical Dupuit solution is presented for the steady flow of salt water toward a well with a volume of fresh water floating on top of the cone of depression. The required salt water discharge for the storage of a given volume of fresh water can be computed with the analytical solution. Numerical modeling is applied to determine how the stored fresh water can be recovered. Three recovery approaches are examined. Fresh water recovery rates on the order of 70% are achievable when salt water is extracted in high volumes, subsurface impermeable barriers are constructed at a distance from the well, or several fresh water recovery drains are used. The effect of ambient flow and interruptions of salt water pumping on the recovery efficiency are reported.


Assuntos
Monitoramento Ambiental/métodos , Água Subterrânea/análise , Salinidade , Abastecimento de Água/análise , Movimentos da Água
2.
Ground Water ; 46(1): 13-22, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18181860

RESUMO

Convolution is a form of superposition that efficiently deals with input varying arbitrarily in time or space. It works whenever superposition is applicable, that is, for linear systems. Even though convolution is well-known since the 19th century, this valuable method is still missing in most textbooks on ground water hydrology. This limits widespread application in this field. Perhaps most papers are too complex mathematically as they tend to focus on the derivation of analytical expressions rather than solving practical problems. However, convolution is straightforward with standard mathematical software or even a spreadsheet, as is demonstrated in the paper. The necessary system responses are not limited to analytic solutions; they may also be obtained by running an already existing ground water model for a single stress period until equilibrium is reached. With these responses, high-resolution time series of head or discharge may then be computed by convolution for arbitrary points and arbitrarily varying input, without further use of the model. There are probably thousands of applications in the field of ground water hydrology that may benefit from convolution. Therefore, its inclusion in ground water textbooks and courses is strongly needed.


Assuntos
Modelos Teóricos , Abastecimento de Água , Algoritmos , Simulação por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...