Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hear Res ; 447: 109009, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38670009

RESUMO

We recently reported that the central nucleus of the inferior colliculus (the auditory midbrain) is innervated by glutamatergic pyramidal cells originating not only in auditory cortex (AC), but also in multiple 'non-auditory' regions of the cerebral cortex. Here, in anaesthetised rats, we used optogenetics and electrical stimulation, combined with recording in the inferior colliculus to determine the functional influence of these descending connections. Specifically, we determined the extent of monosynaptic excitation and the influence of these descending connections on spontaneous activity in the inferior colliculus. A retrograde virus encoding both green fluorescent protein (GFP) and channelrhodopsin (ChR2) injected into the central nucleus of the inferior colliculus (ICc) resulted in GFP expression in discrete groups of cells in multiple areas of the cerebral cortex. Light stimulation of AC and primary motor cortex (M1) caused local activation of cortical neurones and increased the firing rate of neurones in ICc indicating a direct excitatory input from AC and M1 to ICc with a restricted distribution. In naïve animals, electrical stimulation at multiple different sites within M1, secondary motor, somatosensory, and prefrontal cortices increased firing rate in ICc. However, it was notable that stimulation at some adjacent sites failed to influence firing at the recording site in ICc. Responses in ICc comprised singular spikes of constant shape and size which occurred with a short, and fixed latency (∼ 5 ms) consistent with monosynaptic excitation of individual ICc units. Increasing the stimulus current decreased the latency of these spikes, suggesting more rapid depolarization of cortical neurones, and increased the number of (usually adjacent) channels on which a monosynaptic spike was seen, suggesting recruitment of increasing numbers of cortical neurons. Electrical stimulation of cortical regions also evoked longer latency, longer duration increases in firing activity, comprising multiple units with spikes occurring with significant temporal jitter, consistent with polysynaptic excitation. Increasing the stimulus current increased the number of spikes in these polysynaptic responses and increased the number of channels on which the responses were observed, although the magnitude of the responses always diminished away from the most activated channels. Together our findings indicate descending connections from motor, somatosensory and executive cortical regions directly activate small numbers of ICc neurones and that this in turn leads to extensive polysynaptic activation of local circuits within the ICc.


Assuntos
Córtex Auditivo , Vias Auditivas , Estimulação Elétrica , Colículos Inferiores , Córtex Motor , Optogenética , Córtex Somatossensorial , Sinapses , Animais , Colículos Inferiores/fisiologia , Córtex Somatossensorial/fisiologia , Córtex Auditivo/fisiologia , Córtex Motor/fisiologia , Vias Auditivas/fisiologia , Sinapses/fisiologia , Masculino , Neurônios/fisiologia , Ratos Sprague-Dawley , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Feminino , Channelrhodopsins/metabolismo , Channelrhodopsins/genética , Ratos
2.
Hear Res ; 424: 108585, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35926306

RESUMO

The anti-inflammatory drug salicylate induces tinnitus in animals and man. Salicylate reduces cochlear output but causes hyperactivity in higher auditory centres, including the inferior colliculus (the auditory midbrain). Using multi-electrode recording in anaesthetised guinea pigs (Cavia porcellus), we addressed the hypothesis that salicylate-induced hyperactivity in the inferior colliculus involves nitric oxide signalling secondary to increased ascending excitatory input. Systemic salicylate (200 mg/kg i.p., 0 h) markedly increased spontaneous and sound-driven neuronal firing in the inferior colliculus (3-6 h post drug), with both onset and sustained responses to pure tones being massively increased. Reverse microdialysis of increasing concentrations of salicylate directly into the inferior colliculus (100 µM-10 mM, from 0 h) failed to mimic systemic salicylate. In contrast, it caused a small, transient, increase in sound-driven firing (1 h), followed by a larger sustained decrease in both spontaneous and sound-driven firing (2-5 h). When salicylate was given systemically, reverse microdialysis of the neuronal nitric oxide synthase inhibitor L-methyl arginine into the inferior colliculus (500 mM, 2-6 h) completely blocked the salicylate-induced increase in spontaneous and sound-driven neuronal firing. Our data indicate that systemic salicylate induces neuronal hyperactivity in the auditory midbrain via a mechanism outside the inferior colliculus, presumably upstream in the auditory pathway; and that the mechanism is ultimately dependent on nitric oxide signalling within the inferior colliculus. Given that nitric oxide is known to mediate NMDA receptor signalling in the inferior colliculus, we propose that salicylate activates an ascending glutamatergic input to the inferior colliculus and that this is an important mechanism underlying salicylate-induced tinnitus.


Assuntos
Colículos Inferiores , Zumbido , Animais , Arginina/metabolismo , Cobaias , Humanos , Colículos Inferiores/fisiologia , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo I/metabolismo , Receptores de N-Metil-D-Aspartato , Salicilatos/metabolismo , Salicilatos/toxicidade , Zumbido/etiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...