Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Physiol ; 193(3): 2122-2140, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37474113

RESUMO

Calredoxin (CRX) is a calcium (Ca2+)-dependent thioredoxin (TRX) in the chloroplast of Chlamydomonas (Chlamydomonas reinhardtii) with a largely unclear physiological role. We elucidated the CRX functionality by performing in-depth quantitative proteomics of wild-type cells compared with a crx insertional mutant (IMcrx), two CRISPR/Cas9 KO mutants, and CRX rescues. These analyses revealed that the chloroplast NADPH-dependent TRX reductase (NTRC) is co-regulated with CRX. Electron transfer measurements revealed that CRX inhibits NADPH-dependent reduction of oxidized chloroplast 2-Cys peroxiredoxin (PRX1) via NTRC and that the function of the NADPH-NTRC complex is under strict control of CRX. Via non-reducing SDS-PAGE assays and mass spectrometry, our data also demonstrated that PRX1 is more oxidized under high light (HL) conditions in the absence of CRX. The redox tuning of PRX1 and control of the NADPH-NTRC complex via CRX interconnect redox control with active photosynthetic electron transport and metabolism, as well as Ca2+ signaling. In this way, an economic use of NADPH for PRX1 reduction is ensured. The finding that the absence of CRX under HL conditions severely inhibited light-driven CO2 fixation underpins the importance of CRX for redox tuning, as well as for efficient photosynthesis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Chlamydomonas reinhardtii , Tiorredoxina Dissulfeto Redutase/genética , Tiorredoxina Dissulfeto Redutase/metabolismo , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , NADP/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Cálcio/metabolismo , Cloroplastos/metabolismo , Oxirredução , Tiorredoxinas/genética , Tiorredoxinas/metabolismo , Peroxirredoxinas/genética , Peroxirredoxinas/metabolismo
2.
Bioinformatics ; 36(22-23): 5330-5336, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33325487

RESUMO

MOTIVATION: Protein glycosylation is a complex post-translational modification with crucial cellular functions in all domains of life. Currently, large-scale glycoproteomics approaches rely on glycan database dependent algorithms and are thus unsuitable for discovery-driven analyses of glycoproteomes. RESULTS: Therefore, we devised SugarPy, a glycan database independent Python module, and validated it on the glycoproteome of human breast milk. We further demonstrated its applicability by analyzing glycoproteomes with uncommon glycans stemming from the green alga Chlamydomonas reinhardtii and the archaeon Haloferax volcanii. SugarPy also facilitated the novel characterization of glycoproteins from the red alga Cyanidioschyzon merolae. AVAILABILITY AND IMPLEMENTATION: The source code is freely available on GitHub (https://github.com/SugarPy/SugarPy), and its implementation in Python ensures support for all operating systems. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

3.
Elife ; 92020 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-33300874

RESUMO

For the unicellular alga Chlamydomonas reinhardtii, the presence of N-glycosylated proteins on the surface of two flagella is crucial for both cell-cell interaction during mating and flagellar surface adhesion. However, it is not known whether only the presence or also the composition of N-glycans attached to respective proteins is important for these processes. To this end, we tested several C. reinhardtii insertional mutants and a CRISPR/Cas9 knockout mutant of xylosyltransferase 1A, all possessing altered N-glycan compositions. Taking advantage of atomic force microscopy and micropipette force measurements, our data revealed that reduction in N-glycan complexity impedes the adhesion force required for binding the flagella to surfaces. This results in impaired polystyrene bead binding and transport but not gliding of cells on solid surfaces. Notably, assembly, intraflagellar transport, and protein import into flagella are not affected by altered N-glycosylation. Thus, we conclude that proper N-glycosylation of flagellar proteins is crucial for adhering C. reinhardtii cells onto surfaces, indicating that N-glycans mediate surface adhesion via direct surface contact.


Assuntos
Polissacarídeos/metabolismo , Proteína 9 Associada à CRISPR , Sistemas CRISPR-Cas , Adesão Celular , Chlamydomonas reinhardtii/metabolismo , Flagelos/metabolismo , Edição de Genes , Técnicas de Inativação de Genes , Glicosilação , Microscopia de Força Atômica
4.
Plant J ; 102(2): 230-245, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31777161

RESUMO

Nowadays, little information is available regarding the N-glycosylation pathway in the green microalga Chlamydomonas reinhardtii. Recent investigation demonstrated that C. reinhardtii synthesizes linear oligomannosides. Maturation of these oligomannosides results in N-glycans that are partially methylated and carry one or two xylose residues. One xylose residue was demonstrated to be a core ß(1,2)-xylose. Recently, N-glycoproteomic analysis performed on glycoproteins secreted by C. reinhardtii demonstrated that the xylosyltransferase A (XTA) was responsible for the addition of the core ß(1,2)-xylose. Furthermore, another xylosyltransferase candidate named XTB was suggested to be involved in the xylosylation in C. reinhardtii. In the present study, we focus especially on the characterization of the structures of the xylosylated N-glycans from C. reinhardtii taking advantage of insertional mutants of XTA and XTB, and of the XTA/XTB double-mutant. The combination of mass spectrometry approaches allowed us to identify the major N-glycan structures bearing one or two xylose residues. They confirm that XTA is responsible for the addition of the core ß(1,2)-xylose, whereas XTB is involved in the addition of the xylose residue onto the linear branch of the N-glycan as well as in the partial addition of the core ß(1,2)-xylose suggesting that this transferase exhibits a low substrate specificity. Analysis of the double-mutant suggests that an additional xylosyltransferase is involved in the xylosylation process in C. reinhardtii. Additional putative candidates have been identified in the C. reinhardtii genome. Altogether, these results pave the way for a better understanding of the C. reinhardtii N-glycosylation pathway.


Assuntos
Proteínas de Algas/metabolismo , Chlamydomonas reinhardtii/enzimologia , Pentosiltransferases/metabolismo , Proteínas de Algas/genética , Sequência de Aminoácidos , Chlamydomonas reinhardtii/química , Chlamydomonas reinhardtii/genética , Glicoproteínas/química , Glicosilação , Espectrometria de Massas , Mutagênese Insercional , Pentosiltransferases/genética , Filogenia , Polissacarídeos/química , Alinhamento de Sequência , Xilose/química , UDP Xilose-Proteína Xilosiltransferase
5.
Front Plant Sci ; 10: 1686, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32010168

RESUMO

Chlamydomonas reinhardtii (C. reinhardtii) N-glycans carry plant typical ß1,2-core xylose, α1,3-fucose residues, as well as plant atypical terminal ß1,4-xylose and methylated mannoses. In a recent study, XylT1A was shown to act as core xylosyltransferase, whereby its action was of importance for an inhibition of excessive Man1A dependent trimming. N-Glycans found in a XylT1A/Man1A double mutant carried core xylose residues, suggesting the existence of a second core xylosyltransferase in C. reinhardtii. To further elucidate enzymes important for N-glycosylation, novel single knockdown mutants of candidate genes involved in the N-glycosylation pathway were characterized. In addition, double, triple, and quadruple mutants affecting already known N-glycosylation pathway genes were generated. By characterizing N-glycan compositions of intact N-glycopeptides from these mutant strains by mass spectrometry, a candidate gene encoding for a second putative core xylosyltransferase (XylT1B) was identified. Additionally, the role of a putative fucosyltransferase was revealed. Mutant strains with knockdown of both xylosyltransferases and the fucosyltransferase resulted in the formation of N-glycans with strongly diminished core modifications. Thus, the mutant strains generated will pave the way for further investigations on how single N-glycan core epitopes modulate protein function in C. reinhardtii.

6.
Artigo em Inglês | MEDLINE | ID: mdl-29933219

RESUMO

Mono ADP-ribosylation is a common characteristic of bacterial toxins resulting to aberrant activation or inactivation of target proteins. The C3 exoenzyme of Clostridium botulinum (C3bot) ADP-ribosylates the small GTPases RhoA, RhoB and RhoC, leading to inactivation of these important regulators and impaired down-stream signaling. Quantification of ADP-ribosylation using gel migration assays, antibodies, and radioactivity-based methods are limited. Therefore a novel LC-MS-based method to specifically determine and quantify ADP-ribosylation of Rho GTPases was established. A heavy labeled protein standard that contained ADP-ribosylation specific peptides in similar amounts in ADP ribosylated and non ADP ribosylated form was used for relative quantification in vivo. In a proof of principle experiment HT22 cells were treated with C3bot and the kinetics of RhoA/B and RhoC ADP-ribosylation were determined in vivo.


Assuntos
ADP-Ribosilação/fisiologia , Espectrometria de Massas/métodos , Proteínas rho de Ligação ao GTP/metabolismo , Animais , Linhagem Celular , Cromatografia Líquida/métodos , Cinética , Camundongos , Peptídeos/análise , Peptídeos/química , Peptídeos/metabolismo
7.
Plant Physiol ; 176(3): 1952-1964, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29288232

RESUMO

At present, only little is known about the enzymatic machinery required for N-glycosylation in Chlamydomonas reinhardtii, leading to the formation of N-glycans harboring Xyl and methylated Man. This machinery possesses new enzymatic features, as C. reinhardtii N-glycans are independent of ß1,2-N-acetylglucosaminyltransferase I. Here we have performed comparative N-glycoproteomic analyses of insertional mutants of mannosidase 1A (IM Man1A ) and xylosyltransferase 1A (IM XylT1A ). The disruption of man1A affected methylation of Man and the addition of terminal Xyl. The absence of XylT1A led to shorter N-glycans compared to the wild type. The use of a IM Man1A xIM XylT1A double mutant revealed that the absence of Man1A suppressed the IM XylT1A phenotype, indicating that the increased N-glycan trimming is regulated by core ß1,2-Xyl and is dependent on Man1A activity. These data point toward an enzymatic cascade in the N-glycosylation pathway of C. reinhardtii with interlinked roles of Man1A and XylT1A. The results described herein represent the first step toward a functional characterization of the enzymatic N-glycosylation machinery in C. reinhardtii.


Assuntos
Chlamydomonas reinhardtii/enzimologia , Chlamydomonas reinhardtii/genética , Glicoproteínas/metabolismo , Manosidases/genética , Mutação/genética , Pentosiltransferases/genética , Proteômica/métodos , Chlamydomonas reinhardtii/efeitos dos fármacos , Cruzamentos Genéticos , Testes Genéticos , Glicopeptídeos/metabolismo , Hexoses/farmacologia , Manosidases/metabolismo , Metilação , Mutagênese Insercional/genética , Polissacarídeos/química , Polissacarídeos/metabolismo , UDP Xilose-Proteína Xilosiltransferase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...