Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 9(6): e17405, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37416643

RESUMO

Globally, endemic species and natural habitats have been significantly impacted by climate change, and further considerable impacts are predicted. Therefore, understanding how endemic species are impacted by climate change can aid in advancing the necessary conservation initiatives. The use of niche modeling is becoming a popular topic in biological conservation to forecast changes in species distributions under various climate change scenarios. This study used the Australian Community Climate and Earth System Simulator version 1 (ACCESS-CM2) general circulation model of coupled model intercomparison project phase 6 (CMIP6) to model the current distribution of suitable habitat for the four threatened Annonaceae species endemic to East Africa (EA), to determine the impact of climate change on their suitable habitat in the years 2050 (average for 2041-2060) and 2070 (average for 2061-2080). Two shared socio-economic pathways (SSPs) SSP370 and SSP585 were used to project the contraction and expansion of suitable habitats for Uvariodendron kirkii, Uvaria kirkii, Uvariodendron dzomboense and Asteranthe asterias endemic to Kenya and Tanzania in EA. The current distribution for all four species is highly influenced by precipitation, temperature, and environmental factors (population, potential evapotranspiration, and aridity index). Although the loss of the original suitable habitat is anticipated to be significant, appropriate habitat expansion and contraction are projections for all species. More than 70% and 40% of the original habitats of Uvariodendron dzombense and Uvariodendron kirkii are predicted to be destroyed by climate change, respectively. Based on our research, we suggest that areas that are expected to shrink owing to climate change be classified as important protection zones for the preservation of Annonaceae species.

2.
J Ethnobiol Ethnomed ; 19(1): 13, 2023 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-37143165

RESUMO

BACKGROUND: Understanding how local communities perceive threats and management options of wild edible plants (WEPs) is essential in developing their conservation strategies and action plans. Due to their multiple use values, including nutrition, medicinal, construction, and cultural as well as biotic and abiotic pressures, WEPs are exposed to overexploitation, especially within arid and semiarid lands, and hence the need to manage and conserve them. We demonstrate how an understanding of indigenous communities' perceptions could be achieved through an integrated participatory approach involving focus group discussions (FGDs) and field plot surveys. METHODS: We conducted three FGDs between October 2020 and April 2021 within three community units in northwestern Kenya with different socioeconomic and environmental characteristics. We subsequently surveyed 240 field plots of size 1 ha each to assess threats facing WEPs within a 5 km buffer radius in every study community. We compared ranks of threats and management options across community units. RESULTS: Rankings of threats and management options differed across the three study communities. We obtained strong positive linear relationships between field and FGD rankings of threats facing WEPs. Climate change, overstocking, overharvesting, and invasive species were the highest-ranked threats. Mitigation of climate change, local knowledge preservation, selection, propagation, processing, and marketing of WEPs ranked high among possible management options irrespective of the socioeconomic and environmental characteristics of the community unit. CONCLUSIONS: Our approach emphasizes the relevance of leveraging indigenous communities' perceptions and conducting field plot surveys to assess threats and management options for WEPs. Evaluating the effectiveness and cost-benefit implications of implementing the highly ranked management options could help determine potentially suitable habitats of the WEPs for conservation and management purposes, especially for priority WEPs.


Assuntos
Etnobotânica , Plantas Comestíveis , Quênia , Conservação dos Recursos Naturais , Espécies Introduzidas
3.
Front Plant Sci ; 11: 339, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32269583

RESUMO

Climate change triggered by global warming poses a major threat to agricultural systems globally. This phenomenon is characterized by emergence of pests and diseases, extreme weather events, such as prolonged drought, high intensity rains, hailstones and frosts, which are becoming more frequent ultimately impacting negatively to agricultural production including rain-fed tea cultivation. Kenya is predominantly an agricultural based economy, with the tea sector generating about 26% of the total export earnings and about 4% gross domestic product (GDP). In the recent years, however, the country has witnessed unstable trends in tea production associated with climate driven stresses. Toward mitigation and adaptation of climate change, multiple approaches for impact assessment, intensity prediction and adaptation have been advanced in the Kenyan tea sub-sector. Further, pressure on tea breeders to release improved climate-compatible cultivars for the rapidly deteriorating environment has resulted in the adoption of a multi-targeted approach seeking to understand the complex molecular regulatory networks associated with biotic and abiotic stresses adaptation and tolerance in tea. Genetic modeling, a powerful tool that assists in breeding process, has also been adopted for selection of tea cultivars for optimal performance under varying climatic conditions. A range of physiological and biochemical responses known to counteract the effects of environmental stresses in most plants that include lowering the rates of cellular growth and net photosynthesis, stomatal closure, and the accumulation of organic solutes such as sugar alcohols, or osmolytes have been used to support breeding programs through screening of new tea cultivars suitable for changing environment. This review describes simulation models combined with high resolution climate change scenarios required to quantify the relative importance of climate change on tea production. In addition, both biodiversity and ecosystem based approaches are described as a part of an overall adaptation strategy to mitigate adverse effects of climate change on tea in Kenya and gaps highlighted for urgent investigations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...