Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Gen Virol ; 97(10): 2633-2642, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27543142

RESUMO

One of the most characteristic pathological changes in cats that have succumbed to feline infectious peritonitis (FIP) is a multifocal granulomatous phlebitis. Although it is now well established that leukocyte extravasation elicits the inflammation typically associated with FIP lesions, relatively few studies have aimed at elucidating this key pathogenic event. The upregulation of adhesion molecules on the endothelium is a prerequisite for stable leukocyte-endothelial cell (EC) adhesion that necessarily precedes leukocyte diapedesis. Therefore, the present work focused on the expression of the EC adhesion molecules and possible triggers of EC activation during the development of FIP. Immunofluorescence analysis revealed that the endothelial expression of P-selectin, E-selectin, intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1) was elevated in veins close to granulomatous infiltrates in the renal cortex of FIP patients compared to non-infiltrated regions and specimens from healthy cats. Next, we showed that feline venous ECs become activated when exposed to supernatant from feline infectious peritonitis virus (FIPV)-infected monocytes, as indicated by increased adhesion molecule expression. Active viral replication seemed to be required to induce the EC-stimulating activity in monocytes. Finally, adhesion assays revealed an increased adhesion of naive monocytes to ECs treated with supernatant from FIPV-infected monocytes. Taken together, our results strongly indicate that FIPV activates ECs to increase monocyte adhesion by an indirect route, in which proinflammatory factors released from virus-infected monocytes act as key intermediates.


Assuntos
Moléculas de Adesão Celular/genética , Coronavirus Felino/fisiologia , Células Endoteliais/virologia , Peritonite Infecciosa Felina/virologia , Córtex Renal/virologia , Monócitos/virologia , Animais , Gatos , Adesão Celular , Moléculas de Adesão Celular/imunologia , Células Cultivadas , Coronavirus Felino/genética , Selectina E/genética , Selectina E/imunologia , Células Endoteliais/citologia , Células Endoteliais/imunologia , Peritonite Infecciosa Felina/genética , Peritonite Infecciosa Felina/imunologia , Peritonite Infecciosa Felina/fisiopatologia , Molécula 1 de Adesão Intercelular/genética , Molécula 1 de Adesão Intercelular/imunologia , Córtex Renal/citologia , Córtex Renal/imunologia , Monócitos/imunologia , Selectina-P/genética , Selectina-P/imunologia , Regulação para Cima , Molécula 1 de Adesão de Célula Vascular/genética , Molécula 1 de Adesão de Célula Vascular/imunologia
2.
Sci Rep ; 6: 20022, 2016 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-26822958

RESUMO

Feline infectious peritonitis (FIP) results from mutations in the viral genome during a common feline enteric coronavirus (FECV) infection. Since many virological and immunological data on FECV infections are lacking, the present study investigated these missing links during experimental infection of three SPF cats with FECV strain UCD. Two cats showed mild clinical signs, faecal shedding of infectious virus from 4 dpi, a cell-associated viraemia at inconsistent time points from 5 dpi, a highly neutralising antibody response from 9 dpi, and no major abnormalities in leukocyte numbers. Faecal shedding lasted for 28-56 days, but virus shed during this stage was less infectious in enterocyte cultures and affected by mutations. Remarkably, in the other cat neither clinical signs nor acute shedding were seen, but virus was detected in blood cells from 3 dpi, and shedding of non-enterotropic, mutated viruses suddenly occurred from 14 dpi onwards. Neutralising antibodies arose from 21 dpi. Leukocyte numbers were not different compared to the other cats, except for the CD8(+) regulatory T cells. These data indicate that FECV can infect immune cells even in the absence of intestinal replication and raise the hypothesis that the gradual adaptation to these cells can allow non-enterotropic mutants to arise.


Assuntos
Coronavirus Felino/fisiologia , Enterócitos/virologia , Peritonite Infecciosa Felina/virologia , Mutação , Eliminação de Partículas Virais , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Gatos , Células Cultivadas , Evolução Molecular , Fezes/virologia , Peritonite Infecciosa Felina/imunologia , Genoma Viral , Contagem de Leucócitos , Viremia
3.
J Gen Virol ; 95(Pt 2): 393-402, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24189622

RESUMO

The type I IFN-mediated immune response is the first line of antiviral defence. Coronaviruses, like many other viruses, have evolved mechanisms to evade this innate response, ensuring their survival. Several coronavirus accessory genes play a central role in these pathways, but for feline coronaviruses this has never to our knowledge been studied. As it has been demonstrated previously that ORF7 is essential for efficient replication in vitro and virulence in vivo of feline infectious peritonitis virus (FIPV), the role of this ORF in the evasion of the IFN-α antiviral response was investigated. Deletion of ORF7 from FIPV strain 79-1146 (FIPV-Δ7) rendered the virus more susceptible to IFN-α treatment. Given that ORF7 encodes two proteins, 7a and 7b, it was further explored which of these proteins is active in this mechanism. Providing 7a protein in trans rescued the mutant FIPV-Δ7 from IFN sensitivity, which was not achieved by addition of 7b protein. Nevertheless, addition of protein 7a to FIPV-Δ3Δ7, a FIPV mutant deleted in both ORF3 and ORF7, could no longer increase the replication capacity of this mutant in the presence of IFN. These results indicate that FIPV 7a protein is a type I IFN antagonist and protects the virus from the antiviral state induced by IFN, but it needs the presence of ORF3-encoded proteins to exert its antagonistic function.


Assuntos
Coronavirus Felino/imunologia , Coronavirus Felino/fisiologia , Interações Hospedeiro-Patógeno , Interferon-alfa/antagonistas & inibidores , Interferon-alfa/imunologia , Proteínas Virais/metabolismo , Animais , Gatos , Linhagem Celular , Coronavirus Felino/genética , Deleção de Genes , Teste de Complementação Genética , Proteínas Virais/genética , Replicação Viral
4.
Vet Res ; 44: 71, 2013 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-23964891

RESUMO

Feline infectious peritonitis (FIP) is the most feared infectious cause of death in cats, induced by feline infectious peritonitis virus (FIPV). This coronavirus is a virulent mutant of the harmless, ubiquitous feline enteric coronavirus (FECV). To date, feline coronavirus (FCoV) research has been hampered by the lack of susceptible cell lines for the propagation of serotype I FCoVs. In this study, long-term feline intestinal epithelial cell cultures were established from primary ileocytes and colonocytes by simian virus 40 (SV40) T-antigen- and human Telomerase Reverse Transcriptase (hTERT)-induced immortalization. Subsequently, these cultures were evaluated for their usability in FCoV research. Firstly, the replication capacity of the serotype II strains WSU 79-1683 and WSU 79-1146 was studied in the continuous cultures as was done for the primary cultures. In accordance with the results obtained in primary cultures, FCoV WSU 79-1683 still replicated significantly more efficient compared to FCoV WSU 79-1146 in both continuous cultures. In addition, the cultures were inoculated with faecal suspensions from healthy cats and with faecal or tissue suspensions from FIP cats. The cultures were susceptible to infection with different serotype I enteric strains and two of these strains were further propagated. No infection was seen in cultures inoculated with FIPV tissue homogenates. In conclusion, a new reliable model for FCoV investigation and growth of enteric field strains was established. In contrast to FIPV strains, FECVs showed a clear tropism for intestinal epithelial cells, giving an explanation for the observation that FECV is the main pathotype circulating among cats.


Assuntos
Antígenos Virais/biossíntese , Técnicas de Cultura de Células/métodos , Colo/virologia , Coronavirus Felino/fisiologia , Peritonite Infecciosa Felina/virologia , Íleo/virologia , Animais , Gatos , Técnicas de Cultura de Células/veterinária , Linhagem Celular , Coronavirus Felino/imunologia , Coronavirus Felino/patogenicidade , Células Epiteliais/virologia , Fezes/virologia , Reação em Cadeia da Polimerase/veterinária , RNA/genética , RNA/metabolismo
5.
Vet Microbiol ; 166(3-4): 438-49, 2013 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-23910523

RESUMO

Feline infectious peritonitis (FIP) is a fatal, coronavirus-induced systemic disease in domestic and wild felids. The pathology associated with FIP (multifocal granulomatous vasculitis) is considered to be elicited by exaggerated activation and subsequent extravasation of leukocytes. As changes in the expression of adhesion molecules on circulating leukocytes precede their margination and emigration, we reasoned that the expression of leukocyte adhesion molecules may be altered in FIP. In present study, the expression of principal adhesion molecules involved in leukocyte transmigration (CD15s, CD11a, CD11b, CD18, CD49d, and CD54) on peripheral blood leukocytes from cats with naturally occurring FIP (n=15) and controls (n=12) was quantified by flow cytometry using a formaldehyde-based rapid leukocyte preparation technique. T- and B-lymphocytes from FIP patients exhibit higher expression of both subunits (CD11a and CD18) composing the ß2 integrin lymphocyte function-associated antigen (LFA)-1. In addition, the expression of the α4 subunit (CD49d) of the ß1 integrin very late antigen (VLA)-4 was elevated on B-lymphocytes from FIP patients. The expression of CD11b and CD18, that combine to form the ß2 integrin macrophage-1 antigen (Mac-1), was elevated on monocytes, whereas the density of CD49d was reduced on this population in FIP. Granulocytes of FIP cats displayed an increased expression of the α chain of Mac-1 (CD11b). These observations suggest that leukocytes from FIP patients show signs of systemic activation causing them to extravasate into surrounding tissues and ultimately contribute to pyogranuloma formation seen in FIP.


Assuntos
Moléculas de Adesão Celular/metabolismo , Peritonite Infecciosa Felina/imunologia , Leucócitos/metabolismo , Animais , Linfócitos B/imunologia , Linfócitos B/metabolismo , Gatos , Células Cultivadas , Feminino , Citometria de Fluxo , Contagem de Leucócitos , Leucócitos/citologia , Leucócitos/imunologia , Masculino
6.
BMC Vet Res ; 9: 170, 2013 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-23987139

RESUMO

BACKGROUND: The in vitro culture of endothelial cells (ECs) is an indispensable tool for studying the role of the endothelium in physical and pathological conditions. Primary ECs, however, have a restricted proliferative lifespan which hampers their use in long-term studies. The need for standardized experimental conditions to obtain relevant and reproducible results has increased the demand for well-characterized, continuous EC lines that retain the phenotypic and functional characteristics of their non-transformed counterparts. RESULTS: Primary feline ECs from aorta and vena cava were successfully immortalized through the successive introduction of simian virus 40 large T (SV40LT) antigen and the catalytic subunit of human telomerase (hTERT). In contrast to the parental ECs, the transformed cells were able to proliferate continuously in culture. Established cell lines exhibited several inherent endothelial properties, including typical cobblestone morphology, binding of endothelial cell-specific lectins and internalization of acetylated low-density lipoprotein. In addition, the immortalization did not affect the functional phenotype as demonstrated by their capacity to rapidly form cord-like structures on matrigel and to express cell adhesion molecules following cytokine stimulation. CONCLUSION: The ability to immortalize feline ECs, and the fact that these cells maintain the EC phenotype will enable a greater understanding of fundamental mechanisms of EC biology and endothelial-related diseases. Furthermore, the use of cell lines is an effective implementation of the 3-R principles formulated by Russel and Burch.


Assuntos
Gatos/fisiologia , Técnicas de Cultura de Células/veterinária , Células Endoteliais/fisiologia , Animais , Antígenos Transformantes de Poliomavirus , Aorta/citologia , Aorta/fisiologia , Linhagem Celular , Citoesqueleto/genética , Citoesqueleto/metabolismo , Células Endoteliais/ultraestrutura , Regulação da Expressão Gênica , Humanos , Lipoproteínas LDL/metabolismo , Lectinas de Plantas/farmacologia , Telomerase/genética , Telomerase/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Veias Cavas/citologia , Veias Cavas/fisiologia , Fator de von Willebrand
7.
Vet Microbiol ; 162(2-4): 447-455, 2013 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-23182908

RESUMO

The ability to productively infect monocytes/macrophages is the most important difference between the low virulent feline enteric coronavirus (FECV) and the lethal feline infectious peritonitis virus (FIPV). In vitro, the replication of FECV in peripheral blood monocytes always drops after 12h post inoculation, while FIPV sustains its replication in the monocytes from 45% of the cats. The accessory proteins of feline coronaviruses have been speculated to play a prominent role in virulence as deletions were found to be associated with attenuated viruses. Still, no functions have been ascribed to them. In order to investigate if the accessory proteins of FIPV are important for sustaining its replication in monocytes, replication kinetics were determined for FIPV 79-1146 and its deletion mutants, lacking either accessory protein open reading frame 3abc (FIPV-Δ3), 7ab (FIPV-Δ7) or both (FIPV-Δ3Δ7). Results showed that the deletion mutants FIPV-Δ7 and FIPV-Δ3Δ7 could not maintain their replication, which was in sharp contrast to wt-FIPV. FIPV-Δ3 could still sustain its replication, but the percentage of infected monocytes was always lower compared to wt-FIPV. In conclusion, this study showed that ORF7 is crucial for FIPV replication in monocytes/macrophages, giving an explanation for its importance in vivo, its role in the development of FIP and its conservation in field strains. The effect of an ORF3 deletion was less pronounced, indicating only a supportive role of ORF3 encoded proteins during the infection of the in vivo target cell by FIPVs.


Assuntos
Doenças do Gato/sangue , Doenças do Gato/virologia , Infecções por Coronavirus/veterinária , Coronavirus Felino/fisiologia , Leucócitos Mononucleares/virologia , Proteínas Virais Reguladoras e Acessórias/fisiologia , Replicação Viral/fisiologia , Animais , Gatos , Linhagem Celular , Infecções por Coronavirus/sangue , Coronavirus Felino/genética , Coronavirus Felino/metabolismo , Coronavirus Felino/patogenicidade , Mutação , Proteínas do Nucleocapsídeo/biossíntese , Fases de Leitura Aberta , Proteínas Virais Reguladoras e Acessórias/metabolismo , Virulência , Replicação Viral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...