Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 6(38): 24419-24431, 2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34604624

RESUMO

Electrodeposition is an electrochemical method employed to deposit stable and robust gold nanoparticles (AuNPs) on electrode surfaces for creating chemically modified electrodes (CMEs). The use of several electrodeposition techniques with different experimental parameters allow in obtaining various surface morphologies of AuNPs deposited on the electrode surface. By considering the electrodeposition of AuNPs in various background electrolytes could play an important strategy in finding the most suitable formation of the electrodeposited AuNP films on the electrode surface. This is because different electrode roughnesses can have different effects on the electrochemical activities of the modified electrodes. Thus, in this study, the electrodeposition of AuNPs onto the glassy carbon (GC) electrode surfaces in various aqueous neutral and acidic electrolytes was achieved by using the cyclic voltammetry (CV) technique with no adjustable CV parameters. Then, surface morphologies and electrochemical activities of the electrodeposited AuNPs were investigated using scanning electron microscopy (SEM), atomic force microscopy (AFM), CV, and electrochemical impedance spectroscopy (EIS). The obtained SEM and 3D-AFM images show that AuNPs deposited at the GC electrode prepared in NaNO3 solution form a significantly better, uniform, and homogeneous electrodeposited AuNP film on the GC electrode surface with nanoparticle sizes ranging from ∼36 to 60 nm. Meanwhile, from the electrochemical performances of the AuNP-modified GC electrodes, characterized by using a mixture of ferricyanide and ferrocyanide ions [Fe(CN6)3-/4-], there is no significant difference observed in the case of charge-transfer resistances (R ct) and heterogeneous electron-transfer rate constants (k o), although there are differences in the surface morphologies of the electrodeposited AuNP films. Remarkably, the R ct values of the AuNP-modified GC electrodes are lower than those of the bare GC electrode by 18-fold, as the R ct values were found to be ∼6 Ω (p < 0.001, n = 3). This has resulted in obtaining k o values of AuNP-modified GC electrodes between the magnitude of 10-2 and 10-3 cm s-1, giving a faster electron-transfer rate than that of the bare GC electrode (10-4 cm s-1). This study confirms that using an appropriate supporting background electrolyte plays a critical role in preparing electrodeposited AuNP films. This approach could lead to nanostructures with a more densely, uniformly, and homogeneously electrodeposited AuNP film on the electrode surfaces, albeit utilizing an easy and simple preparation method.

2.
RSC Adv ; 11(27): 16557-16571, 2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-35479129

RESUMO

3D-printing or additive manufacturing is presently an emerging technology in the fourth industrial revolution that promises to reshape traditional manufacturing processes. The electrochemistry field can undoubtedly take advantage of this technology to fabricate electrodes to create a new generation of electrode sensor devices that could replace conventionally manufactured electrodes; glassy carbon, screen-printed carbon and carbon composite electrodes. In the electrochemistry research area, studies to date show that there is a demand for electrically 3D printable conductive polymer/carbon nanomaterial filaments where these materials can be printed out through an extrusion process based upon the fused deposition modelling (FDM) method. FDM could be used to manufacture novel electrochemical 3D printed electrode sensing devices for electrochemical sensor and biosensor applications. This is due to the FDM method being the most affordable 3D printing technique since conductive and non-conductive thermoplastic filaments are commercially available. Therefore, in this minireview, we focus on only the most outstanding studies that have been published since 2018. We believe this to be a highly-valuable research area to the scientific community, both in academia and industry, to enable novel ideas, materials, designs and methods relating to electroanalytical sensing devices to be generated. This approach has the potential to create a new generation of electrochemical sensing devices based upon additive manufacturing. This minireview also provides insight into how the research community could improve the electrochemical performance of 3D-printed electrodes to significantly increase the sensitivity of the 3D-printed electrodes as electrode sensing devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...