Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Sensors (Basel) ; 23(7)2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37050767

RESUMO

The design of torsional springs for series elastic actuators (SEAs) is challenging, especially when balancing good stiffness characteristics and efficient torque robustness. This study focuses on the design of a lightweight, low-cost, and compact torsional spring for use in the energy storage-rotary series elastic actuator (ES-RSEA) of a lumbar support exoskeleton. The exoskeleton is used as an assistive device to prevent lower back injuries. The torsion spring was designed following design for manufacturability (DFM) principles, focusing on minimal space and weight. The design process involved determining the potential topology and optimizing the selected topology parameters through the finite element method (FEM) to reduce equivalent stress. The prototype was made using a waterjet cutting process with a low-cost material (AISI-4140-alloy) and tested using a custom-made test rig. The results showed that the torsion spring had a linear torque-displacement relationship with 99% linearity, and the deviation between FEM simulation and experimental measurements was less than 2%. The torsion spring has a maximum torque capacity of 45.7 Nm and a 440 Nm/rad stiffness. The proposed torsion spring is a promising option for lumbar support exoskeletons and similar applications requiring low stiffness, low weight-to-torque ratio, and cost-effectiveness.

2.
Genome Biol ; 24(1): 35, 2023 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-36829244

RESUMO

BACKGROUND: Mapping of quantitative trait loci (QTL) associated with molecular phenotypes is a powerful approach for identifying the genes and molecular mechanisms underlying human traits and diseases, though most studies have focused on individuals of European descent. While important progress has been made to study a greater diversity of human populations, many groups remain unstudied, particularly among indigenous populations within Africa. To better understand the genetics of gene regulation in East Africans, we perform expression and splicing QTL mapping in whole blood from a cohort of 162 diverse Africans from Ethiopia and Tanzania. We assess replication of these QTLs in cohorts of predominantly European ancestry and identify candidate genes under selection in human populations. RESULTS: We find the gene regulatory architecture of African and non-African populations is broadly shared, though there is a considerable amount of variation at individual loci across populations. Comparing our analyses to an equivalently sized cohort of European Americans, we find that QTL mapping in Africans improves the detection of expression QTLs and fine-mapping of causal variation. Integrating our QTL scans with signatures of natural selection, we find several genes related to immunity and metabolism that are highly differentiated between Africans and non-Africans, as well as a gene associated with pigmentation. CONCLUSION: Extending QTL mapping studies beyond European ancestry, particularly to diverse indigenous populations, is vital for a complete understanding of the genetic architecture of human traits and can reveal novel functional variation underlying human traits and disease.


Assuntos
População da África Oriental , Locos de Características Quantitativas , Humanos , Mapeamento Cromossômico , Expressão Gênica , Tanzânia , Variação Genética
3.
Sensors (Basel) ; 22(19)2022 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-36236608

RESUMO

The load cell is an indispensable component of many engineering machinery and industrial automation for measuring and sensing force and torque. This paper describes the design and analysis of the strain gauge load cell, from the conceptional design stage to shape optimization (based on the finite element method (FEM) technique) and calibration, providing ample load capacity with low-cost material (aluminum 6061) and highly accurate force measurement. The amplifier circuit of the half Wheatstone bridge configuration with two strain gauges was implemented experimentally with an actual load cell prototype. The calibration test was conducted to evaluate the load cell characteristics and derive the governing equation for sensing the unknown load depending on the measured output voltage. The measured sensitivity of the load cell is approximately 15 mV/N and 446.8 µV/V at a maximum applied load of 30 kg. The findings are supported by FEM results and experiments with an acceptable percentage of errors, which revealed an overall error of 6% in the worst situation. Therefore, the proposed load cell meets the design considerations for axial force measurement for the laboratory test bench, which has a light weight of 20 g and a maximum axial force capacity of 300 N with good sensor characteristics.


Assuntos
Alumínio , Calibragem , Torque
4.
Proc Natl Acad Sci U S A ; 119(21): e2123000119, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35580180

RESUMO

Human genomic diversity has been shaped by both ancient and ongoing challenges from viruses. The current coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has had a devastating impact on population health. However, genetic diversity and evolutionary forces impacting host genes related to SARS-CoV-2 infection are not well understood. We investigated global patterns of genetic variation and signatures of natural selection at host genes relevant to SARS-CoV-2 infection (angiotensin converting enzyme 2 [ACE2], transmembrane protease serine 2 [TMPRSS2], dipeptidyl peptidase 4 [DPP4], and lymphocyte antigen 6 complex locus E [LY6E]). We analyzed data from 2,012 ethnically diverse Africans and 15,977 individuals of European and African ancestry with electronic health records and integrated with global data from the 1000 Genomes Project. At ACE2, we identified 41 nonsynonymous variants that were rare in most populations, several of which impact protein function. However, three nonsynonymous variants (rs138390800, rs147311723, and rs145437639) were common among central African hunter-gatherers from Cameroon (minor allele frequency 0.083 to 0.164) and are on haplotypes that exhibit signatures of positive selection. We identify signatures of selection impacting variation at regulatory regions influencing ACE2 expression in multiple African populations. At TMPRSS2, we identified 13 amino acid changes that are adaptive and specific to the human lineage compared with the chimpanzee genome. Genetic variants that are targets of natural selection are associated with clinical phenotypes common in patients with COVID-19. Our study provides insights into global variation at host genes related to SARS-CoV-2 infection, which have been shaped by natural selection in some populations, possibly due to prior viral infections.


Assuntos
COVID-19 , África , Enzima de Conversão de Angiotensina 2/genética , COVID-19/genética , Variação Genética , Humanos , Fenótipo , SARS-CoV-2/genética , Seleção Genética
5.
Res Sq ; 2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34341784

RESUMO

We investigated global patterns of genetic variation and signatures of natural selection at host genes relevant to SARS-CoV-2 infection ( ACE2, TMPRSS2, DPP4 , and LY6E ). We analyzed novel data from 2,012 ethnically diverse Africans and 15,997 individuals of European and African ancestry with electronic health records, and integrated with global data from the 1000GP. At ACE2 , we identified 41 non-synonymous variants that were rare in most populations, several of which impact protein function. However, three non-synonymous variants were common among Central African hunter-gatherers from Cameroon and are on haplotypes that exhibit signatures of positive selection. We identify strong signatures of selection impacting variation at regulatory regions influencing ACE2 expression in multiple African populations. At TMPRSS2 , we identified 13 amino acid changes that are adaptive and specific to the human lineage. Genetic variants that are targets of natural selection are associated with clinical phenotypes common in patients with COVID-19.

6.
medRxiv ; 2021 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-34230933

RESUMO

We investigated global patterns of genetic variation and signatures of natural selection at host genes relevant to SARS-CoV-2 infection (ACE2, TMPRSS2, DPP4, and LY6E). We analyzed novel data from 2,012 ethnically diverse Africans and 15,997 individuals of European and African ancestry with electronic health records, and integrated with global data from the 1000GP. At ACE2, we identified 41 non-synonymous variants that were rare in most populations, several of which impact protein function. However, three non-synonymous variants were common among Central African hunter-gatherers from Cameroon and are on haplotypes that exhibit signatures of positive selection. We identify strong signatures of selection impacting variation at regulatory regions influencing ACE2 expression in multiple African populations. At TMPRSS2, we identified 13 amino acid changes that are adaptive and specific to the human lineage. Genetic variants that are targets of natural selection are associated with clinical phenotypes common in patients with COVID-19.

7.
Genome Biol ; 20(1): 204, 2019 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-31597575

RESUMO

Following publication of the original article [1], a typographical error in the formula for calculating di in the "Scans for local adaptation" subsection in the Method section, was identified. The correct formula should be.

8.
Genome Biol ; 20(1): 82, 2019 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-31023338

RESUMO

BACKGROUND: Africa is the origin of modern humans within the past 300 thousand years. To infer the complex demographic history of African populations and adaptation to diverse environments, we sequenced the genomes of 92 individuals from 44 indigenous African populations. RESULTS: Genetic structure analyses indicate that among Africans, genetic ancestry is largely partitioned by geography and language, though we observe mixed ancestry in many individuals, consistent with both short- and long-range migration events followed by admixture. Phylogenetic analysis indicates that the San genetic lineage is basal to all modern human lineages. The San and Niger-Congo, Afroasiatic, and Nilo-Saharan lineages were substantially diverged by 160 kya (thousand years ago). In contrast, the San and Central African rainforest hunter-gatherer (CRHG), Hadza hunter-gatherer, and Sandawe hunter-gatherer lineages were diverged by ~ 120-100 kya. Niger-Congo, Nilo-Saharan, and Afroasiatic lineages diverged more recently by ~ 54-16 kya. Eastern and western CRHG lineages diverged by ~ 50-31 kya, and the western CRHG lineages diverged by ~ 18-12 kya. The San and CRHG populations maintained the largest effective population size compared to other populations prior to 60 kya. Further, we observed signatures of positive selection at genes involved in muscle development, bone synthesis, reproduction, immune function, energy metabolism, and cell signaling, which may contribute to local adaptation of African populations. CONCLUSIONS: We observe high levels of genomic variation between ethnically diverse Africans which is largely correlated with geography and language. Our study indicates ancient population substructure and local adaptation of Africans.


Assuntos
Adaptação Biológica , Evolução Biológica , População Negra/genética , Filogenia , Densidade Demográfica , África , Genoma Humano , Migração Humana , Humanos , Filogeografia
9.
Proc Natl Acad Sci U S A ; 116(10): 4166-4175, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30782801

RESUMO

Anatomically modern humans arose in Africa ∼300,000 years ago, but the demographic and adaptive histories of African populations are not well-characterized. Here, we have generated a genome-wide dataset from 840 Africans, residing in western, eastern, southern, and northern Africa, belonging to 50 ethnicities, and speaking languages belonging to four language families. In addition to agriculturalists and pastoralists, our study includes 16 populations that practice, or until recently have practiced, a hunting-gathering (HG) lifestyle. We observe that genetic structure in Africa is broadly correlated not only with geography, but to a lesser extent, with linguistic affiliation and subsistence strategy. Four East African HG (EHG) populations that are geographically distant from each other show evidence of common ancestry: the Hadza and Sandawe in Tanzania, who speak languages with clicks classified as Khoisan; the Dahalo in Kenya, whose language has remnant clicks; and the Sabue in Ethiopia, who speak an unclassified language. Additionally, we observed common ancestry between central African rainforest HGs and southern African San, the latter of whom speak languages with clicks classified as Khoisan. With the exception of the EHG, central African rainforest HGs, and San, other HG groups in Africa appear genetically similar to neighboring agriculturalist or pastoralist populations. We additionally demonstrate that infectious disease, immune response, and diet have played important roles in the adaptive landscape of African history. However, while the broad biological processes involved in recent human adaptation in Africa are often consistent across populations, the specific loci affected by selective pressures more often vary across populations.


Assuntos
População Negra/genética , Etnicidade/genética , Variação Genética , Genoma Humano , Idioma , Filogenia , Feminino , Humanos , Masculino
10.
J Pathog ; 2018: 2393854, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29984002

RESUMO

There is an increasing need for innovative drug and prophylaxis discovery against malaria. The aim of the present study was to test in vivo antiplasmodial activity of Croton macrostachyus H. (Euphorbiaceae) stem bark extracts from Kenyan folkloric medicine. Inbred Balb/c mice were inoculated with erythrocytes parasitized with Plasmodium berghei (ANKA). Different doses (500, 250, and 100 mg/kg) of C. macrostachyus ethyl acetate, methanol, aqueous, and isobutanol extracts were administrated either after inoculation (Peters' 4-day suppressive test) or before inoculation (chemoprotective test) of the parasitized erythrocytes. All the extracts showed significant suppression of parasitemia compared to control (p < 0.001): for the ethyl acetate extract in the range of 58-82%, for the methanol extract in the range of 27-68%, for the aqueous extract in the range of 24-72%, and for the isobutanol extract in the range of 61-80%. Chemoprotective effect was significant (p < 0.001) and the suppression caused by the ethyl acetate extract was between 74 and 100%, by the methanol extract between 57 and 83%, and by the isobutanol extract between 86-92%. The study showed that it is possible to inhibit the growth of the parasites by various stem bark extracts of C. macrostachyus in Balb/c mice supporting the folkloric use of the plant against malaria.

11.
J Infect Dev Ctries ; 10(6): 635-42, 2016 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-27367013

RESUMO

INTRODUCTION: Chemotherapy still is the most effective way to control malaria, a major public health problem in sub-Saharan Africa. The large-scale use of the combination therapy artemether-lumefantrine for malaria treatment in Africa predisposes lumefantrine to emergence of resistance. There is need to identify drugs that can be used as substitutes to lumefantrine for use in combination therapy. Methylene blue, a synthetic anti-methemoglobinemia drug, has been shown to contain antimalarial properties, making it a candidate for drug repurposing. The present study sought to determine antiplasmodial effects of methylene blue against lumefantrine- and pyrimethamine-resistant strains of P. berghei. METHODOLOGY: Activity of methylene blue was assessed using the classical four-day test on mice infected with lumefantrine-resistant and pyrimethamine-resistant P. berghei. A dose of 45 mg/kg/day was effective for testing ED90. Parasitemia and mice survival was determined. RESULTS: At 45 mg/kg/day, methylene blue sustained significant parasite inhibition, over 99%, for at least 6 days post-treatment against lumefantrine-resistant and pyrimethamine-resistant P. berghei (p = 0.0086 and p = 0.0191, respectively). No serious adverse effects were observed. CONCLUSIONS: Our results indicate that methylene blue at a concentration of 45 mg/kg/day confers over 99% inhibition against lumefantrine- and pyrimethamine-resistant P. berghei for six days. This shows the potential use methylene blue in the development of antimalarials against lumefantrine- and pyrimethamine-resistant parasites.


Assuntos
Antimaláricos/administração & dosagem , Resistência a Medicamentos , Inibidores Enzimáticos/administração & dosagem , Malária/tratamento farmacológico , Azul de Metileno/administração & dosagem , Plasmodium berghei/efeitos dos fármacos , Animais , Antimaláricos/efeitos adversos , Antimaláricos/farmacologia , Modelos Animais de Doenças , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Inibidores Enzimáticos/efeitos adversos , Inibidores Enzimáticos/farmacologia , Etanolaminas/farmacologia , Feminino , Fluorenos/farmacologia , Lumefantrina , Masculino , Azul de Metileno/efeitos adversos , Azul de Metileno/farmacologia , Camundongos , Parasitemia/tratamento farmacológico , Pirimetamina/farmacologia , Análise de Sobrevida , Resultado do Tratamento
12.
PLoS One ; 10(9): e0136726, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26333092

RESUMO

Malaria is a responsible for approximately 600 thousand deaths worldwide every year. Appropriate and timely treatment of malaria can prevent deaths but is dependent on accurate and rapid diagnosis of the infection. Currently, microscopic examination of the Giemsa stained blood smears is the method of choice for diagnosing malaria. Although it has limited sensitivity and specificity in field conditions, it still remains the gold standard for the diagnosis of malaria. Here, we report the development of a fluorescence in situ hybridization (FISH) based method for detecting malaria infection in blood smears and describe the use of an LED light source that makes the method suitable for use in resource-limited malaria endemic countries. The Plasmodium Genus (P-Genus) FISH assay has a Plasmodium genus specific probe that detects all five species of Plasmodium known to cause the disease in humans. The P. falciparum (PF) FISH assay and P. vivax (PV) FISH assay detect and differentiate between P. falciparum and P. vivax respectively from other Plasmodium species. The FISH assays are more sensitive than Giemsa. The sensitivities of P-Genus, PF and PV FISH assays were found to be 98.2%, 94.5% and 98.3%, respectively compared to 89.9%, 83.3% and 87.9% for the detection of Plasmodium, P. falciparum and P. vivax by Giemsa staining respectively.


Assuntos
Hibridização in Situ Fluorescente/métodos , Malária/sangue , Malária/diagnóstico , Plasmodium/isolamento & purificação , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Testes Hematológicos/métodos , Humanos , Lactente , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Adulto Jovem
13.
J Infect Dis ; 210(12): 2001-8, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-24994911

RESUMO

BACKGROUND: The efficacy of artemisinin-based combination therapy (ACT) for Plasmodium falciparum malaria may be threatened by parasites with reduced responsiveness to artemisinins. Among 298 ACT-treated children from Mbita, Kenya, submicroscopic persistence of P. falciparum on day 3 posttreatment was associated with subsequent microscopically detected parasitemia at days 28 or 42. METHODS: DNA sequences of resistance-associated parasite loci pfcrt, pfmdr1, pfubp1, and pfap2mu were determined in the Mbita cohort before treatment, on days 2 and 3 after initiation of treatment, and on the day of treatment failure. RESULTS: Parasites surviving ACT on day 2 or day 3 posttreatment were significantly more likely than the baseline population to carry the wild-type haplotypes of pfcrt (CVMNK at codons 72-76; P < .001) and pfmdr1 (NFD at codons 86, 184, 1246; P < .001). In contrast, variant alleles of the novel candidate resistance genes pfap2mu (S160N/T; P = .006) and pfubp-1 (E1528D; P < .001) were significantly more prevalent posttreatment. No genetic similarities were found to artemisinin-tolerant parasites recently described in Cambodia. CONCLUSIONS: Among treated children in western Kenya, certain P. falciparum genotypes defined at pfcrt, pfmdr1, pfap2mu, and pfubp1 more often survive ACT at the submicroscopic level, and contribute to onward transmission and subsequent patent recrudescence.


Assuntos
Antimaláricos/uso terapêutico , Artemisininas/uso terapêutico , Malária Falciparum/tratamento farmacológico , Proteínas de Membrana Transportadoras/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , Seleção Genética , Camboja , Criança , Pré-Escolar , Resistência a Medicamentos , Quimioterapia Combinada , Feminino , Genótipo , Humanos , Lactente , Quênia , Masculino , Plasmodium falciparum/isolamento & purificação
14.
J Hum Genet ; 59(6): 349-52, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24785689

RESUMO

Bitter taste perception, mediated by receptors encoded by the TAS2R loci, has important roles in human health and nutrition. Prior studies have demonstrated that nonsynonymous variation at site 516 in the coding exon of TAS2R16, a bitter taste receptor gene on chromosome 7, has been subject to positive selection and is strongly correlated with differences in sensitivity to salicin, a bitter anti-inflammatory compound, in human populations. However, a recent study suggested that the derived G-allele at rs702424 in the TAS2R16 promoter has also been the target of recent selection and may have an additional effect on the levels of salicin bitter taste perception. Here, we examined alleles at rs702424 for signatures of selection using Extended Haplotype Homozygosity (EHH) and FST statistics in diverse populations from West Central, Central and East Africa. We also performed a genotype-phenotype analysis of salicin sensitivity in a subset of 135 individuals from East Africa. Based on our data, we did not find evidence for positive selection at rs702424 in African populations, suggesting that nucleotide position 516 is likely the site under selection at TAS2R16. Moreover, we did not detect a significant association between rs702424 alleles and salicin bitter taste recognition, implying that this site does not contribute to salicin phenotypic variance. Overall, this study of African diversity provides further information regarding the genetic architecture and evolutionary history of a biologically-relevant trait in humans.


Assuntos
Polimorfismo de Nucleotídeo Único , Regiões Promotoras Genéticas , Receptores Acoplados a Proteínas G/genética , Percepção Gustatória/genética , África Oriental , Alelos , Anti-Inflamatórios/farmacologia , Álcoois Benzílicos/farmacologia , Evolução Molecular , Estudos de Associação Genética , Glucosídeos/farmacologia , Humanos , Receptores Acoplados a Proteínas G/metabolismo
15.
Am J Hum Genet ; 94(4): 496-510, 2014 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-24630847

RESUMO

In humans, the ability to digest lactose, the sugar in milk, declines after weaning because of decreasing levels of the enzyme lactase-phlorizin hydrolase, encoded by LCT. However, some individuals maintain high enzyme amounts and are able to digest lactose into adulthood (i.e., they have the lactase-persistence [LP] trait). It is thought that selection has played a major role in maintaining this genetically determined phenotypic trait in different human populations that practice pastoralism. To identify variants associated with the LP trait and to study its evolutionary history in Africa, we sequenced MCM6 introns 9 and 13 and ~2 kb of the LCT promoter region in 819 individuals from 63 African populations and in 154 non-Africans from nine populations. We also genotyped four microsatellites in an ~198 kb region in a subset of 252 individuals to reconstruct the origin and spread of LP-associated variants in Africa. Additionally, we examined the association between LP and genetic variability at candidate regulatory regions in 513 individuals from eastern Africa. Our analyses confirmed the association between the LP trait and three common variants in intron 13 (C-14010, G-13907, and G-13915). Furthermore, we identified two additional LP-associated SNPs in intron 13 and the promoter region (G-12962 and T-956, respectively). Using neutrality tests based on the allele frequency spectrum and long-range linkage disequilibrium, we detected strong signatures of recent positive selection in eastern African populations and the Fulani from central Africa. In addition, haplotype analysis supported an eastern African origin of the C-14010 LP-associated mutation in southern Africa.


Assuntos
Lactase/metabolismo , África , Humanos , Íntrons , Lactase-Florizina Hidrolase/genética , Lactase-Florizina Hidrolase/metabolismo , Repetições de Microssatélites/genética , Componente 6 do Complexo de Manutenção de Minicromossomo/genética , Reação em Cadeia da Polimerase , Polimorfismo de Nucleotídeo Único , Regiões Promotoras Genéticas
16.
Mol Biol Evol ; 31(2): 288-302, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24177185

RESUMO

Bitter taste perception influences human nutrition and health, and the genetic variation underlying this trait may play a role in disease susceptibility. To better understand the genetic architecture and patterns of phenotypic variability of bitter taste perception, we sequenced a 996 bp region, encompassing the coding exon of TAS2R16, a bitter taste receptor gene, in 595 individuals from 74 African populations and in 94 non-Africans from 11 populations. We also performed genotype-phenotype association analyses of threshold levels of sensitivity to salicin, a bitter anti-inflammatory compound, in 296 individuals from Central and East Africa. In addition, we characterized TAS2R16 mutants in vitro to investigate the effects of polymorphic loci identified at this locus on receptor function. Here, we report striking signatures of positive selection, including significant Fay and Wu's H statistics predominantly in East Africa, indicating strong local adaptation and greater genetic structure among African populations than expected under neutrality. Furthermore, we observed a "star-like" phylogeny for haplotypes with the derived allele at polymorphic site 516 associated with increased bitter taste perception that is consistent with a model of selection for "high-sensitivity" variation. In contrast, haplotypes carrying the "low-sensitivity" ancestral allele at site 516 showed evidence of strong purifying selection. We also demonstrated, for the first time, the functional effect of nonsynonymous variation at site 516 on salicin phenotypic variance in vivo in diverse Africans and showed that most other nonsynonymous substitutions have weak or no effect on cell surface expression in vitro, suggesting that one main polymorphism at TAS2R16 influences salicin recognition. Additionally, we detected geographic differences in levels of bitter taste perception in Africa not previously reported and infer an East African origin for high salicin sensitivity in human populations.


Assuntos
Álcoois Benzílicos/química , População Negra/genética , Glucosídeos/química , Receptores Acoplados a Proteínas G/genética , Paladar/genética , Alelos , Evolução Molecular , Éxons , Estudos de Associação Genética , Variação Genética , Haplótipos , Humanos , Malária/epidemiologia , Malária/genética , Modelos Genéticos , Filogenia , Filogeografia , Polimorfismo de Nucleotídeo Único , Receptores Acoplados a Proteínas G/metabolismo , Seleção Genética
17.
J Infect Dis ; 208(12): 2017-24, 2013 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-23945376

RESUMO

BACKGROUND: Parasite clearance time after artemisinin-based combination therapy (ACT) may be increasing in Asian and African settings. The association between parasite clearance following ACT and transmissibility is currently unknown. METHODS: We determined parasite clearance dynamics by duplex quantitative polymerase chain reaction (qPCR) in samples collected in the first 3 days after treatment of uncomplicated malaria with ACT. Gametocyte carriage was determined by Pfs25 quantitative nucleic acid sequence-based amplification assays; infectiousness to mosquitoes by membrane-feeding assays on day 7 after treatment. RESULTS: Residual parasitemia was detected by qPCR in 31.8% (95% confidence interval [CI], 24.6-39.8) of the children on day 3 after initiation of treatment. Residual parasitemia was associated with a 2-fold longer duration of gametocyte carriage (P = .0007), a higher likelihood of infecting mosquitoes (relative risk, 1.95; 95% CI, 1.17-3.24; P = .015), and a higher parasite burden in mosquitoes (incidence rate ratio, 2.92; 95% CI, 1.61-5.31; P < .001). Children with residual parasitemia were also significantly more likely to experience microscopically detectable parasitemia during follow-up (relative risk, 11.25; 95% CI, 4.08-31.01; P < .001). CONCLUSIONS: Residual submicroscopic parasitemia is common after ACT and is associated with a higher transmission potential. Residual parasitemia may also have consequences for individual patients because of its higher risk of recurrent parasitemia.


Assuntos
Antimaláricos/uso terapêutico , Artemisininas/uso terapêutico , Etanolaminas/uso terapêutico , Fluorenos/uso terapêutico , Malária Falciparum/tratamento farmacológico , Malária Falciparum/parasitologia , Plasmodium falciparum/isolamento & purificação , Animais , Combinação Arteméter e Lumefantrina , Distribuição de Qui-Quadrado , Criança , Pré-Escolar , DNA de Protozoário/sangue , Combinação de Medicamentos , Resistência a Medicamentos , Humanos , Lactente , Quênia/epidemiologia , Malária Falciparum/epidemiologia , Malária Falciparum/transmissão , Parasitemia/parasitologia , Plasmodium falciparum/genética , Plasmodium falciparum/patogenicidade , Reação em Cadeia da Polimerase , Quinolinas/uso terapêutico , Recidiva
18.
Am J Hum Genet ; 93(1): 54-66, 2013 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-23768513

RESUMO

Disease susceptibility can arise as a consequence of adaptation to infectious disease. Recent findings have suggested that higher rates of chronic kidney disease (CKD) in individuals with recent African ancestry might be attributed to two risk alleles (G1 and G2) at the serum-resistance-associated (SRA)-interacting-domain-encoding region of APOL1. These two alleles appear to have arisen adaptively, possibly as a result of their protective effects against human African trypanosomiasis (HAT), or African sleeping sickness. In order to explore the distribution of potential functional variation at APOL1, we studied nucleotide variation in 187 individuals across ten geographically and genetically diverse African ethnic groups with exposure to two Trypanosoma brucei subspecies that cause HAT. We observed unusually high levels of nonsynonymous polymorphism in the regions encoding the functional domains that are required for lysing parasites. Whereas allele frequencies of G2 were similar across all populations (3%-8%), the G1 allele was only common in the Yoruba (39%). Additionally, we identified a haplotype (termed G3) that contains a nonsynonymous change at the membrane-addressing-domain-encoding region of APOL1 and is present in all populations except for the Yoruba. Analyses of long-range patterns of linkage disequilibrium indicate evidence of recent selection acting on the G3 haplotype in Fulani from Cameroon. Our results indicate that the G1 and G2 variants in APOL1 are geographically restricted and that there might be other functional variants that could play a role in HAT resistance and CKD risk in African populations.


Assuntos
Apolipoproteínas/genética , População Negra/genética , Lipoproteínas HDL/genética , Polimorfismo de Nucleotídeo Único , Seleção Genética , Adaptação Biológica , África , Alelos , Apolipoproteína L1 , Resistência à Doença/genética , Evolução Molecular , Éxons , Frequência do Gene , Predisposição Genética para Doença , Genética Populacional/métodos , Haplótipos , Humanos , Desequilíbrio de Ligação , Dados de Sequência Molecular , Insuficiência Renal Crônica/etnologia , Insuficiência Renal Crônica/genética , Fatores de Risco , Tripanossomíase Africana/etnologia , Tripanossomíase Africana/genética
19.
Hum Genet ; 132(9): 987-99, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23609612

RESUMO

Malaria is one of the strongest selective pressures in recent human evolution. African populations have been and continue to be at risk for malarial infections. However, few studies have re-sequenced malaria susceptibility loci across geographically and genetically diverse groups in Africa. We examined nucleotide diversity at Intercellular adhesion molecule-1 (ICAM-1), a malaria susceptibility candidate locus, in a number of human populations with a specific focus on diverse African ethnic groups. We used tests of neutrality to assess whether natural selection has impacted this locus and tested whether SNP variation at ICAM-1 is correlated with malaria endemicity. We observe differing patterns of nucleotide and haplotype variation in global populations and higher levels of diversity in Africa. Although we do not observe a deviation from neutrality based on the allele frequency distribution, we do observe several alleles at ICAM-1, including the ICAM-1 (Kilifi) allele, that are correlated with malaria endemicity. We show that the ICAM-1 (Kilifi) allele, which is common in Africa and Asia, exists on distinct haplotype backgrounds and is likely to have arisen more recently in Asia. Our results suggest that correlation analyses of allele frequencies and malaria endemicity may be useful for identifying candidate functional variants that play a role in malaria resistance and susceptibility.


Assuntos
Etnicidade/genética , Predisposição Genética para Doença/genética , Variação Genética , Molécula 1 de Adesão Intercelular/genética , Malária/genética , Sequência de Bases , População Negra/genética , Primers do DNA/genética , Frequência do Gene , Genética Populacional , Haplótipos/genética , Humanos , Desequilíbrio de Ligação , Malária/etnologia , Dados de Sequência Molecular , Polimorfismo de Nucleotídeo Único/genética , Alinhamento de Sequência , Análise de Sequência de DNA
20.
J Infect Dis ; 207(11): 1637-45, 2013 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-23468056

RESUMO

BACKGROUND: Artemisinin-based combination therapy (ACT) reduces the potential for malaria transmission, compared with non-ACTs. It is unclear whether this effect differs between ACTs. METHODS: A total of 298 children (age, 6 months to 10 years) with uncomplicated falciparum malaria were randomized to artemether-lumefantrine (AL; n = 153) or dihydroartemisinin-piperaquine (DP; n = 145) in Mbita, a community in western Kenya. Gametocyte carriage was determined by molecular methods on days 0, 1, 2, 3, 7, 14, 28, and 42 after treatment initiation. The gametocyte infectiousness to mosquitoes was determined by mosquito-feeding assays on day 7 after beginning therapy. RESULTS: The cumulative risk of recurrent parasitemia on day 42 after initiation of treatment, unadjusted by polymerase chain reaction findings, was 20.7% (95% confidence interval [CI], 14.4-28.2) for AL, compared with 3.7% (95% CI, 1.2-8.5) for DP (P < .001). The mean duration of gametocyte carriage was 5.5 days (95% CI, 3.6-8.5) for AL and 15.3 days (95% CI, 9.7-24.2) for DP (P = .001). The proportion of mosquitoes that became infected after feeding on blood from AL-treated children was 1.88% (43 of 2293), compared with 3.50% (83 of 2371) for those that fed on blood from DP-treated children (P = .06); the oocyst burden among mosquitoes was lower among those that fed on blood from AL-treated children (P = .005) CONCLUSIONS: While DP was associated with a longer prophylactic time after treatment, gametocyte carriage and malaria transmission to mosquitoes was lower after AL treatment. CLINICAL TRIALS REGISTRATION: NCT00868465.


Assuntos
Artemisininas/administração & dosagem , Etanolaminas/administração & dosagem , Fluorenos/administração & dosagem , Malária Falciparum/tratamento farmacológico , Malária Falciparum/transmissão , Quinolinas/administração & dosagem , Animais , Combinação Arteméter e Lumefantrina , Criança , Pré-Escolar , Culicidae/parasitologia , Combinação de Medicamentos , Quimioterapia Combinada/métodos , Feminino , Humanos , Lactente , Quênia , Malária Falciparum/prevenção & controle , Masculino , Plasmodium falciparum/genética , Plasmodium falciparum/isolamento & purificação , Reação em Cadeia da Polimerase , Prevenção Secundária , Fatores de Tempo , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...