Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Chem ; 95(39): 14816-14821, 2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37733605

RESUMO

Further increase in the acidity in the most denaturing acidic solution is known to induce compaction of the fully unfolded protein into a compact molten globule. The phenomenon of "acid-induced folding of proteins" takes place at pH ∼1 in strong acid aqueous solutions with high electrical conductivity and surface tension, a condition that is difficult to handle using conventional electrospray ionization methods for mass spectrometry. Here, high-pressure electrospray ionization (HP-ESI) is used to produce well-resolved mass spectra for proteins in strong acids with pH as low as 1. The compaction of protein conformation is indicated by a large shift in the charge state from high charges to native-like low charges. The addition of salt to the protein in the most denaturing condition also reproduces the compaction effect, thereby supporting the role of anions in this phenomenon. Similar compaction of proteins is also observed in organic solvent/acid mixtures. The charge state of the compacted protein depends on the type of anions that formed ion pairs with a positive charge on the protein. The dissociation of ion pairs during the ionization process forms neutral acids that can be observed by HP-ESI using a soft ion introduction configuration.

2.
Anal Chem ; 95(28): 10744-10751, 2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37418336

RESUMO

An electrospray operated in the steady cone-jet mode is highly stable but the operating state can shift to pulsation or multijet modes owing to changes in flow rate, surface tension, and electrostatic variables. Here, a simple feedback control system was developed using the spray current and the apex angle of a Taylor cone to determine the error signal for correcting the emitter voltage. The system was applied to lock the cone-jet mode operation against external perturbations. For a pump-driven electrospray at a regulated flow rate, the apex angle of the Taylor cone decreased with increasing voltage. In contrast, for a voltage-driven electrospray with low flow resistance, the angle was found to increase with the emitter voltage. A simple algorithm based on iterative learning control was formulated and implemented using a personal computer to automatically correct the emitter voltage in response to the error signal. For voltage-driven electrospray ionization (ESI), the feedback control of the spray current can also be used to regulate the flow rate to an arbitrary value or pattern. Electrospray ionization-mass spectrometry (ESI-MS) with feedback control was demonstrated to produce ion signal acquisition with long-term stability that was insusceptible to the emulated external disturbances.

3.
Chem Sci ; 14(17): 4506-4515, 2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37152264

RESUMO

Oxidative modification is usually used in mass spectrometry (MS) for labeling and structural analysis. Here we report a highly tunable oxidation that can be performed in line with the nanoESI-MS analysis at the same ESI emitter without the use of oxidative reagents such as ozone and H2O2, and UV activation. The method is based on the high-pressure nanoESI of a highly conductive (conductivity >3.8 S m-1) aqueous solution near the minimum flow rate. The ion source is operated under super-atmospheric pressure (0.5 MPa gauge pressure) to avoid the contribution of electric discharge. The analyte at the tip of the Taylor cone or in the emitter droplet can be locally oxidized in an on-demand manner by varying the nanoflow rate. With an offline nanoESI, the degree of oxidation, i.e., the average number of incorporated oxygen atoms, can be finely tuned by voltage modulation using spray current as the feedback signal. Oxidations of easily oxidized residues present in peptides/proteins and the double bonds of the unsaturated phosphatidylcholine occur at low flow rate operation (<5 nL min-1) when the electric field at the tip of the Taylor cone and the initially produced charged droplet reaches approximately 1.3 V nm-1. The oxidized ion signal responds instantaneously to changes in flow rate, indicating that the oxidation is highly localized. Using isotope labeling, it was found that the incorporated oxygen primarily originates from the gas phase, suggesting a direct oxidation pathway for the analyte enriched on the liquid surface via the reactive oxygen atoms formed by the strong electric field.

4.
J Am Soc Mass Spectrom ; 34(4): 728-736, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-36815710

RESUMO

A bipolar ESI source is developed to generate a simultaneous emission of charged liquid jets of opposite polarity from an electrodeless sprayer. The sprayer consists of two emitters, and the electrosprays are initiated by applying a high potential difference (HV) across the counter electrodes facing each emitter. The sprayer and the liquid delivery system are made of all insulators without metal components, thus enabling the total elimination of electrochemical reactions taking place at the liquid-electrode interface in the typical electrosprayer. The bipolar electrospray has been implemented using an online configuration that uses a syringe pump for flow rate regulation and an offline configuration that relies on HV for adjusting the flow rate. The voltage-current and flow rate-current relationships of bipolar electrospray were found to be similar to the standard electrospray. The application of bipolar ESI to the mass spectrometry of protein, peptide, and metallocene without electrochemically induced oxidation/reduction is demonstrated.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...